X-pop3-spooler: POP3MAIL 2.1.0 b 4 980420 -bs- Message-ID: <35D2341E.9AA1F287@kali.com.cn> Date: Thu, 13 Aug 1998 08:32:30 +0800 From: Pan Xing X-Mailer: Mozilla 4.05 [en] (X11; I; Linux 2.0.30 i686) MIME-Version: 1.0 To: Marc Lehmann Subject: Re: Pgcc Slower than Gcc???(Not in mailist, re me diretly, Thx) References: <35CDB2C6 DOT F3D49819 AT kali DOT com DOT cn> <19980812212901 DOT 08698 AT cerebro DOT laendle> Content-Type: multipart/mixed; boundary="------------8CBF3DEDFF22266B20D01CE8" Sender: Marc Lehmann Status: RO X-Status: A Content-Length: 35695 Lines: 1204 This is a multi-part message in MIME format. --------------8CBF3DEDFF22266B20D01CE8 Content-Type: text/plain; charset=gb2312 Content-Transfer-Encoding: 7bit Marc Lehmann wrote: > Ocan send me a link of flops.c? or, if it isn't too large, the file > itself? > > >It might be some weird alignment issue, but as I have almost an identical > > setup, I can check it out myself. > > -----==- | > ----==-- _ | > ---==---(_)__ __ ____ __ Marc Lehmann +-- > --==---/ / _ \/ // /\ \/ / pcg AT goof DOT com |e| > -=====/_/_//_/\_,_/ /_/\_\ --+ > The choice of a GNU generation | > | Thank you very much for your consideration.The flops.c is only 39k, It is attached and I wish it will not bring trouble to your mail box. The flops.c could , really, I believe, gives different computational results at different speeds. In my test, I launch two process in 2 xterm, its speed is lower but result more accurate. Generally speaking, the two results both are accetable. Error are limited to <1.0E-10 generally. Ah, you are in goof.com, the pgcc's base place Right? I really met many odd things these days. Now I guess, whether I should update my libc5.44. Some one give me his pgcc's test ( pgcc1.03a, glibc2.05, intel pii266, linux 2.0.35), almost twice as mine. The pgcc's precomiled version provides only half the Mflops the gcc 2.7.2.3 gives. That's odd enough, at my machine linux2.0.30, libc5.44. I wish these may be helpful. --------------8CBF3DEDFF22266B20D01CE8 Content-Type: text/plain; charset=gb2312; name="flops.c" Content-Transfer-Encoding: 7bit Content-Disposition: inline; filename="flops.c" /*--------------------- Start flops.c source code ----------------------*/ /*****************************/ /* flops.c */ /* Version 2.0, 18 Dec 1992 */ /* Al Aburto */ /* aburto AT nosc DOT mil */ /*****************************/ /* Flops.c is a 'c' program which attempts to estimate your systems floating-point 'MFLOPS' rating for the FADD, FSUB, FMUL, and FDIV operations based on specific 'instruction mixes' (discussed below). The program provides an estimate of PEAK MFLOPS performance by making maximal use of register variables with minimal interaction with main memory. The execution loops are all small so that they will fit in any cache. Flops.c can be used along with Linpack and the Livermore kernels (which exersize memory much more extensively) to gain further insight into the limits of system performance. The flops.c execution modules also include various percent weightings of FDIV's (from 0% to 25% FDIV's) so that the range of performance can be obtained when using FDIV's. FDIV's, being computationally more intensive than FADD's or FMUL's, can impact performance considerably on some systems. Flops.c consists of 8 independent modules (routines) which, except for module 2, conduct numerical integration of various functions. Module 2, estimates the value of pi based upon the Maclaurin series expansion of atan(1). MFLOPS ratings are provided for each module, but the programs overall results are summerized by the MFLOPS(1), MFLOPS(2), MFLOPS(3), and MFLOPS(4) outputs. The MFLOPS(1) result is identical to the result provided by all previous versions of flops.c. It is based only upon the results from modules 2 and 3. Two problems surfaced in using MFLOPS(1). First, it was difficult to completely 'vectorize' the result due to the recurrence of the 's' variable in module 2. This problem is addressed in the MFLOPS(2) result which does not use module 2, but maintains nearly the same weighting of FDIV's (9.2%) as in MFLOPS(1) (9.6%). The second problem with MFLOPS(1) centers around the percentage of FDIV's (9.6%) which was viewed as too high for an important class of problems. This concern is addressed in the MFLOPS(3) result where NO FDIV's are conducted at all. The number of floating-point instructions per iteration (loop) is given below for each module executed: MODULE FADD FSUB FMUL FDIV TOTAL Comment 1 7 0 6 1 14 7.1% FDIV's 2 3 2 1 1 7 difficult to vectorize. 3 6 2 9 0 17 0.0% FDIV's 4 7 0 8 0 15 0.0% FDIV's 5 13 0 15 1 29 3.4% FDIV's 6 13 0 16 0 29 0.0% FDIV's 7 3 3 3 3 12 25.0% FDIV's 8 13 0 17 0 30 0.0% FDIV's A*2+3 21 12 14 5 52 A=5, MFLOPS(1), Same as 40.4% 23.1% 26.9% 9.6% previous versions of the flops.c program. Includes only Modules 2 and 3, does 9.6% FDIV's, and is not easily vectorizable. 1+3+4 58 14 66 14 152 A=4, MFLOPS(2), New output +5+6+ 38.2% 9.2% 43.4% 9.2% does not include Module 2, A*7 but does 9.2% FDIV's. 1+3+4 62 5 74 5 146 A=0, MFLOPS(3), New output +5+6+ 42.9% 3.4% 50.7% 3.4% does not include Module 2, 7+8 but does 3.4% FDIV's. 3+4+6 39 2 50 0 91 A=0, MFLOPS(4), New output +8 42.9% 2.2% 54.9% 0.0% does not include Module 2, and does NO FDIV's. NOTE: Various timer routines are included as indicated below. The timer routines, with some comments, are attached at the end of the main program. NOTE: Please do not remove any of the printouts. EXAMPLE COMPILATION: UNIX based systems cc -DUNIX -O flops.c -o flops cc -DUNIX -DROPT flops.c -o flops cc -DUNIX -fast -O4 flops.c -o flops . . . etc. Al Aburto aburto AT nosc DOT mil */ /***************************************************************/ /* Timer options. You MUST uncomment one of the options below */ /* or compile, for example, with the '-DUNIX' option. */ /***************************************************************/ /* #define Amiga */ /* #define UNIX */ /* #define UNIX_Old */ /* #define VMS */ /* #define BORLAND_C */ /* #define MSC */ /* #define MAC */ /* #define IPSC */ /* #define FORTRAN_SEC */ /* #define GTODay */ /* #define CTimer */ /* #define UXPM */ /* #define MAC_TMgr */ /* #define PARIX */ /* #define POSIX */ /* #define WIN32 */ /* #define POSIX1 */ /***********************/ #include #include /* 'Uncomment' the line below to run */ /* with 'register double' variables */ /* defined, or compile with the */ /* '-DROPT' option. Don't need this if */ /* registers used automatically, but */ /* you might want to try it anyway. */ /* #define ROPT */ double nulltime, TimeArray[3]; /* Variables needed for 'dtime()'. */ double TLimit; /* Threshold to determine Number of */ /* Loops to run. Fixed at 15.0 seconds.*/ double T[36]; /* Global Array used to hold timing */ /* results and other information. */ double sa,sb,sc,sd,one,two,three; double four,five,piref,piprg; double scale,pierr; double A0 = 1.0; double A1 = -0.1666666666671334; double A2 = 0.833333333809067E-2; double A3 = 0.198412715551283E-3; double A4 = 0.27557589750762E-5; double A5 = 0.2507059876207E-7; double A6 = 0.164105986683E-9; double B0 = 1.0; double B1 = -0.4999999999982; double B2 = 0.4166666664651E-1; double B3 = -0.1388888805755E-2; double B4 = 0.24801428034E-4; double B5 = -0.2754213324E-6; double B6 = 0.20189405E-8; double C0 = 1.0; double C1 = 0.99999999668; double C2 = 0.49999995173; double C3 = 0.16666704243; double C4 = 0.4166685027E-1; double C5 = 0.832672635E-2; double C6 = 0.140836136E-2; double C7 = 0.17358267E-3; double C8 = 0.3931683E-4; double D1 = 0.3999999946405E-1; double D2 = 0.96E-3; double D3 = 0.1233153E-5; double E2 = 0.48E-3; double E3 = 0.411051E-6; void main() { #ifdef ROPT register double s,u,v,w,x; #else double s,u,v,w,x; #endif long loops, NLimit; register long i, m, n; printf("\n"); printf(" FLOPS C Program (Double Precision), V2.0 18 Dec 1992\n\n"); /****************************/ loops = 15625; /* Initial number of loops. */ /* DO NOT CHANGE! */ /****************************/ /****************************************************/ /* Set Variable Values. */ /* T[1] references all timing results relative to */ /* one million loops. */ /* */ /* The program will execute from 31250 to 512000000 */ /* loops based on a runtime of Module 1 of at least */ /* TLimit = 15.0 seconds. That is, a runtime of 15 */ /* seconds for Module 1 is used to determine the */ /* number of loops to execute. */ /* */ /* No more than NLimit = 512000000 loops are allowed*/ /****************************************************/ T[1] = 1.0E+06/(double)loops; TLimit = 15.0; NLimit = 512000000; piref = 3.14159265358979324; one = 1.0; two = 2.0; three = 3.0; four = 4.0; five = 5.0; scale = one; printf(" Module Error RunTime MFLOPS\n"); printf(" (usec)\n"); /*************************/ /* Initialize the timer. */ /*************************/ dtime(TimeArray); dtime(TimeArray); /*******************************************************/ /* Module 1. Calculate integral of df(x)/f(x) defined */ /* below. Result is ln(f(1)). There are 14 */ /* double precision operations per loop */ /* ( 7 +, 0 -, 6 *, 1 / ) that are included */ /* in the timing. */ /* 50.0% +, 00.0% -, 42.9% *, and 07.1% / */ /*******************************************************/ n = loops; sa = 0.0; while ( sa < TLimit ) { n = 2 * n; x = one / (double)n; /*********************/ s = 0.0; /* Loop 1. */ v = 0.0; /*********************/ w = one; dtime(TimeArray); for( i = 1 ; i <= n-1 ; i++ ) { v = v + w; u = v * x; s = s + (D1+u*(D2+u*D3))/(w+u*(D1+u*(E2+u*E3))); } dtime(TimeArray); sa = TimeArray[1]; if ( n == NLimit ) break; /* printf(" %10ld %12.5lf\n",n,sa); */ } scale = 1.0E+06 / (double)n; T[1] = scale; /****************************************/ /* Estimate nulltime ('for' loop time). */ /****************************************/ dtime(TimeArray); for( i = 1 ; i <= n-1 ; i++ ) { } dtime(TimeArray); nulltime = T[1] * TimeArray[1]; if ( nulltime < 0.0 ) nulltime = 0.0; T[2] = T[1] * sa - nulltime; sa = (D1+D2+D3)/(one+D1+E2+E3); sb = D1; T[3] = T[2] / 14.0; /*********************/ sa = x * ( sa + sb + two * s ) / two; /* Module 1 Results. */ sb = one / sa; /*********************/ n = (long)( (double)( 40000 * (long)sb ) / scale ); sc = sb - 25.2; T[4] = one / T[3]; /********************/ /* DO NOT REMOVE */ /* THIS PRINTOUT! */ /********************/ printf(" 1 %13.4le %10.4lf %10.4lf\n",sc,T[2],T[4]); m = n; /*******************************************************/ /* Module 2. Calculate value of PI from Taylor Series */ /* expansion of atan(1.0). There are 7 */ /* double precision operations per loop */ /* ( 3 +, 2 -, 1 *, 1 / ) that are included */ /* in the timing. */ /* 42.9% +, 28.6% -, 14.3% *, and 14.3% / */ /*******************************************************/ s = -five; /********************/ sa = -one; /* Loop 2. */ /********************/ dtime(TimeArray); for ( i = 1 ; i <= m ; i++ ) { s = -s; sa = sa + s; } dtime(TimeArray); T[5] = T[1] * TimeArray[1]; if ( T[5] < 0.0 ) T[5] = 0.0; sc = (double)m; u = sa; /*********************/ v = 0.0; /* Loop 3. */ w = 0.0; /*********************/ x = 0.0; dtime(TimeArray); for ( i = 1 ; i <= m ; i++) { s = -s; sa = sa + s; u = u + two; x = x +(s - u); v = v - s * u; w = w + s / u; } dtime(TimeArray); T[6] = T[1] * TimeArray[1]; T[7] = ( T[6] - T[5] ) / 7.0; /*********************/ m = (long)( sa * x / sc ); /* PI Results */ sa = four * w / five; /*********************/ sb = sa + five / v; sc = 31.25; piprg = sb - sc / (v * v * v); pierr = piprg - piref; T[8] = one / T[7]; /*********************/ /* DO NOT REMOVE */ /* THIS PRINTOUT! */ /*********************/ printf(" 2 %13.4le %10.4lf %10.4lf\n",pierr,T[6]-T[5],T[8]); /*******************************************************/ /* Module 3. Calculate integral of sin(x) from 0.0 to */ /* PI/3.0 using Trapazoidal Method. Result */ /* is 0.5. There are 17 double precision */ /* operations per loop (6 +, 2 -, 9 *, 0 /) */ /* included in the timing. */ /* 35.3% +, 11.8% -, 52.9% *, and 00.0% / */ /*******************************************************/ x = piref / ( three * (double)m ); /*********************/ s = 0.0; /* Loop 4. */ v = 0.0; /*********************/ dtime(TimeArray); for( i = 1 ; i <= m-1 ; i++ ) { v = v + one; u = v * x; w = u * u; s = s + u * ((((((A6*w-A5)*w+A4)*w-A3)*w+A2)*w+A1)*w+one); } dtime(TimeArray); T[9] = T[1] * TimeArray[1] - nulltime; u = piref / three; w = u * u; sa = u * ((((((A6*w-A5)*w+A4)*w-A3)*w+A2)*w+A1)*w+one); T[10] = T[9] / 17.0; /*********************/ sa = x * ( sa + two * s ) / two; /* sin(x) Results. */ sb = 0.5; /*********************/ sc = sa - sb; T[11] = one / T[10]; /*********************/ /* DO NOT REMOVE */ /* THIS PRINTOUT! */ /*********************/ printf(" 3 %13.4le %10.4lf %10.4lf\n",sc,T[9],T[11]); /************************************************************/ /* Module 4. Calculate Integral of cos(x) from 0.0 to PI/3 */ /* using the Trapazoidal Method. Result is */ /* sin(PI/3). There are 15 double precision */ /* operations per loop (7 +, 0 -, 8 *, and 0 / ) */ /* included in the timing. */ /* 50.0% +, 00.0% -, 50.0% *, 00.0% / */ /************************************************************/ A3 = -A3; A5 = -A5; x = piref / ( three * (double)m ); /*********************/ s = 0.0; /* Loop 5. */ v = 0.0; /*********************/ dtime(TimeArray); for( i = 1 ; i <= m-1 ; i++ ) { u = (double)i * x; w = u * u; s = s + w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1)+one; } dtime(TimeArray); T[12] = T[1] * TimeArray[1] - nulltime; u = piref / three; w = u * u; sa = w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1)+one; T[13] = T[12] / 15.0; /*******************/ sa = x * ( sa + one + two * s ) / two; /* Module 4 Result */ u = piref / three; /*******************/ w = u * u; sb = u * ((((((A6*w+A5)*w+A4)*w+A3)*w+A2)*w+A1)*w+A0); sc = sa - sb; T[14] = one / T[13]; /*********************/ /* DO NOT REMOVE */ /* THIS PRINTOUT! */ /*********************/ printf(" 4 %13.4le %10.4lf %10.4lf\n",sc,T[12],T[14]); /************************************************************/ /* Module 5. Calculate Integral of tan(x) from 0.0 to PI/3 */ /* using the Trapazoidal Method. Result is */ /* ln(cos(PI/3)). There are 29 double precision */ /* operations per loop (13 +, 0 -, 15 *, and 1 /)*/ /* included in the timing. */ /* 46.7% +, 00.0% -, 50.0% *, and 03.3% / */ /************************************************************/ x = piref / ( three * (double)m ); /*********************/ s = 0.0; /* Loop 6. */ v = 0.0; /*********************/ dtime(TimeArray); for( i = 1 ; i <= m-1 ; i++ ) { u = (double)i * x; w = u * u; v = u * ((((((A6*w+A5)*w+A4)*w+A3)*w+A2)*w+A1)*w+one); s = s + v / (w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1)+one); } dtime(TimeArray); T[15] = T[1] * TimeArray[1] - nulltime; u = piref / three; w = u * u; sa = u*((((((A6*w+A5)*w+A4)*w+A3)*w+A2)*w+A1)*w+one); sb = w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1)+one; sa = sa / sb; T[16] = T[15] / 29.0; /*******************/ sa = x * ( sa + two * s ) / two; /* Module 5 Result */ sb = 0.6931471805599453; /*******************/ sc = sa - sb; T[17] = one / T[16]; /*********************/ /* DO NOT REMOVE */ /* THIS PRINTOUT! */ /*********************/ printf(" 5 %13.4le %10.4lf %10.4lf\n",sc,T[15],T[17]); /************************************************************/ /* Module 6. Calculate Integral of sin(x)*cos(x) from 0.0 */ /* to PI/4 using the Trapazoidal Method. Result */ /* is sin(PI/4)^2. There are 29 double precision */ /* operations per loop (13 +, 0 -, 16 *, and 0 /)*/ /* included in the timing. */ /* 46.7% +, 00.0% -, 53.3% *, and 00.0% / */ /************************************************************/ x = piref / ( four * (double)m ); /*********************/ s = 0.0; /* Loop 7. */ v = 0.0; /*********************/ dtime(TimeArray); for( i = 1 ; i <= m-1 ; i++ ) { u = (double)i * x; w = u * u; v = u * ((((((A6*w+A5)*w+A4)*w+A3)*w+A2)*w+A1)*w+one); s = s + v*(w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1)+one); } dtime(TimeArray); T[18] = T[1] * TimeArray[1] - nulltime; u = piref / four; w = u * u; sa = u*((((((A6*w+A5)*w+A4)*w+A3)*w+A2)*w+A1)*w+one); sb = w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1)+one; sa = sa * sb; T[19] = T[18] / 29.0; /*******************/ sa = x * ( sa + two * s ) / two; /* Module 6 Result */ sb = 0.25; /*******************/ sc = sa - sb; T[20] = one / T[19]; /*********************/ /* DO NOT REMOVE */ /* THIS PRINTOUT! */ /*********************/ printf(" 6 %13.4le %10.4lf %10.4lf\n",sc,T[18],T[20]); /*******************************************************/ /* Module 7. Calculate value of the definite integral */ /* from 0 to sa of 1/(x+1), x/(x*x+1), and */ /* x*x/(x*x*x+1) using the Trapizoidal Rule.*/ /* There are 12 double precision operations */ /* per loop ( 3 +, 3 -, 3 *, and 3 / ) that */ /* are included in the timing. */ /* 25.0% +, 25.0% -, 25.0% *, and 25.0% / */ /*******************************************************/ /*********************/ s = 0.0; /* Loop 8. */ w = one; /*********************/ sa = 102.3321513995275; v = sa / (double)m; dtime(TimeArray); for ( i = 1 ; i <= m-1 ; i++) { x = (double)i * v; u = x * x; s = s - w / ( x + w ) - x / ( u + w ) - u / ( x * u + w ); } dtime(TimeArray); T[21] = T[1] * TimeArray[1] - nulltime; /*********************/ /* Module 7 Results */ /*********************/ T[22] = T[21] / 12.0; x = sa; u = x * x; sa = -w - w / ( x + w ) - x / ( u + w ) - u / ( x * u + w ); sa = 18.0 * v * (sa + two * s ); m = -2000 * (long)sa; m = (long)( (double)m / scale ); sc = sa + 500.2; T[23] = one / T[22]; /********************/ /* DO NOT REMOVE */ /* THIS PRINTOUT! */ /********************/ printf(" 7 %13.4le %10.4lf %10.4lf\n",sc,T[21],T[23]); /************************************************************/ /* Module 8. Calculate Integral of sin(x)*cos(x)*cos(x) */ /* from 0 to PI/3 using the Trapazoidal Method. */ /* Result is (1-cos(PI/3)^3)/3. There are 30 */ /* double precision operations per loop included */ /* in the timing: */ /* 13 +, 0 -, 17 * 0 / */ /* 46.7% +, 00.0% -, 53.3% *, and 00.0% / */ /************************************************************/ x = piref / ( three * (double)m ); /*********************/ s = 0.0; /* Loop 9. */ v = 0.0; /*********************/ dtime(TimeArray); for( i = 1 ; i <= m-1 ; i++ ) { u = (double)i * x; w = u * u; v = w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1)+one; s = s + v*v*u*((((((A6*w+A5)*w+A4)*w+A3)*w+A2)*w+A1)*w+one); } dtime(TimeArray); T[24] = T[1] * TimeArray[1] - nulltime; u = piref / three; w = u * u; sa = u*((((((A6*w+A5)*w+A4)*w+A3)*w+A2)*w+A1)*w+one); sb = w*(w*(w*(w*(w*(B6*w+B5)+B4)+B3)+B2)+B1)+one; sa = sa * sb * sb; T[25] = T[24] / 30.0; /*******************/ sa = x * ( sa + two * s ) / two; /* Module 8 Result */ sb = 0.29166666666666667; /*******************/ sc = sa - sb; T[26] = one / T[25]; /*********************/ /* DO NOT REMOVE */ /* THIS PRINTOUT! */ /*********************/ printf(" 8 %13.4le %10.4lf %10.4lf\n",sc,T[24],T[26]); /**************************************************/ /* MFLOPS(1) output. This is the same weighting */ /* used for all previous versions of the flops.c */ /* program. Includes Modules 2 and 3 only. */ /**************************************************/ T[27] = ( five * (T[6] - T[5]) + T[9] ) / 52.0; T[28] = one / T[27]; /**************************************************/ /* MFLOPS(2) output. This output does not include */ /* Module 2, but it still does 9.2% FDIV's. */ /**************************************************/ T[29] = T[2] + T[9] + T[12] + T[15] + T[18]; T[29] = (T[29] + four * T[21]) / 152.0; T[30] = one / T[29]; /**************************************************/ /* MFLOPS(3) output. This output does not include */ /* Module 2, but it still does 3.4% FDIV's. */ /**************************************************/ T[31] = T[2] + T[9] + T[12] + T[15] + T[18]; T[31] = (T[31] + T[21] + T[24]) / 146.0; T[32] = one / T[31]; /**************************************************/ /* MFLOPS(4) output. This output does not include */ /* Module 2, and it does NO FDIV's. */ /**************************************************/ T[33] = (T[9] + T[12] + T[18] + T[24]) / 91.0; T[34] = one / T[33]; printf("\n"); printf(" Iterations = %10ld\n",m); printf(" NullTime (usec) = %10.4lf\n",nulltime); printf(" MFLOPS(1) = %10.4lf\n",T[28]); printf(" MFLOPS(2) = %10.4lf\n",T[30]); printf(" MFLOPS(3) = %10.4lf\n",T[32]); printf(" MFLOPS(4) = %10.4lf\n\n",T[34]); } /*****************************************************/ /* Various timer routines. */ /* Al Aburto, aburto AT nosc DOT mil, 18 Feb 1997 */ /* */ /* dtime(p) outputs the elapsed time seconds in p[1] */ /* from a call of dtime(p) to the next call of */ /* dtime(p). Use CAUTION as some of these routines */ /* will mess up when timing across the hour mark!!! */ /* */ /* For timing I use the 'user' time whenever */ /* possible. Using 'user+sys' time is a separate */ /* issue. */ /* */ /* Example Usage: */ /* [Timer options added here] */ /* double RunTime, TimeArray[3]; */ /* main() */ /* { */ /* dtime(TimeArray); */ /* [routine to time] */ /* dtime(TimeArray); */ /* RunTime = TimeArray[1]; */ /* } */ /* [Timer code added here] */ /*****************************************************/ /******************************/ /* Timer code. */ /******************************/ /*******************/ /* Amiga dtime() */ /*******************/ #ifdef Amiga #include #define HZ 50 dtime(p) double p[]; { double q; struct tt { long days; long minutes; long ticks; } tt; q = p[2]; DateStamp(&tt); p[2] = ( (double)(tt.ticks + (tt.minutes * 60L * 50L)) ) / (double)HZ; p[1] = p[2] - q; return 0; } #endif /*****************************************************/ /* UNIX dtime(). This is the preferred UNIX timer. */ /* Provided by: Markku Kolkka, mk59200 AT cc DOT tut DOT fi */ /* HP-UX Addition by: Bo Thide', bt AT irfu DOT se */ /*****************************************************/ #ifdef UNIX #include #include #ifdef hpux #include #define getrusage(a,b) syscall(SYS_getrusage,a,b) #endif struct rusage rusage; dtime(p) double p[]; { double q; q = p[2]; getrusage(RUSAGE_SELF,&rusage); p[2] = (double)(rusage.ru_utime.tv_sec); p[2] = p[2] + (double)(rusage.ru_utime.tv_usec) * 1.0e-06; p[1] = p[2] - q; return 0; } #endif /***************************************************/ /* UNIX_Old dtime(). This is the old UNIX timer. */ /* Use only if absolutely necessary as HZ may be */ /* ill defined on your system. */ /***************************************************/ #ifdef UNIX_Old #include #include #include #ifndef HZ #define HZ 60 #endif struct tms tms; dtime(p) double p[]; { double q; q = p[2]; times(&tms); p[2] = (double)(tms.tms_utime) / (double)HZ; p[1] = p[2] - q; return 0; } #endif /*********************************************************/ /* VMS dtime() for VMS systems. */ /* Provided by: RAMO AT uvphys DOT phys DOT UVic DOT CA */ /* Some people have run into problems with this timer. */ /*********************************************************/ #ifdef VMS #include time #ifndef HZ #define HZ 100 #endif struct tbuffer_t { int proc_user_time; int proc_system_time; int child_user_time; int child_system_time; }; struct tbuffer_t tms; dtime(p) double p[]; { double q; q = p[2]; times(&tms); p[2] = (double)(tms.proc_user_time) / (double)HZ; p[1] = p[2] - q; return 0; } #endif /******************************/ /* BORLAND C dtime() for DOS */ /******************************/ #ifdef BORLAND_C #include #include #include #define HZ 100 struct time tnow; dtime(p) double p[]; { double q; q = p[2]; gettime(&tnow); p[2] = 60.0 * (double)(tnow.ti_min); p[2] = p[2] + (double)(tnow.ti_sec); p[2] = p[2] + (double)(tnow.ti_hund)/(double)HZ; p[1] = p[2] - q; return 0; } #endif /**************************************/ /* Microsoft C (MSC) dtime() for DOS */ /**************************************/ #ifdef MSC #include #include #define HZ CLOCKS_PER_SEC clock_t tnow; dtime(p) double p[]; { double q; q = p[2]; tnow = clock(); p[2] = (double)tnow / (double)HZ; p[1] = p[2] - q; return 0; } #endif /*************************************/ /* Macintosh (MAC) Think C dtime() */ /*************************************/ #ifdef MAC #include #define HZ 60 dtime(p) double p[]; { double q; q = p[2]; p[2] = (double)clock() / (double)HZ; p[1] = p[2] - q; return 0; } #endif /************************************************************/ /* iPSC/860 (IPSC) dtime() for i860. */ /* Provided by: Dan Yergeau, yergeau AT gloworm DOT Stanford DOT EDU */ /************************************************************/ #ifdef IPSC extern double dclock(); dtime(p) double p[]; { double q; q = p[2]; p[2] = dclock(); p[1] = p[2] - q; return 0; } #endif /**************************************************/ /* FORTRAN dtime() for Cray type systems. */ /* This is the preferred timer for Cray systems. */ /**************************************************/ #ifdef FORTRAN_SEC fortran double second(); dtime(p) double p[]; { double q,v; q = p[2]; second(&v); p[2] = v; p[1] = p[2] - q; return 0; } #endif /***********************************************************/ /* UNICOS C dtime() for Cray UNICOS systems. Don't use */ /* unless absolutely necessary as returned time includes */ /* 'user+system' time. Provided by: R. Mike Dority, */ /* dority AT craysea DOT cray DOT com */ /***********************************************************/ #ifdef CTimer #include dtime(p) double p[]; { double q; clock_t clock(void); q = p[2]; p[2] = (double)clock() / (double)CLOCKS_PER_SEC; p[1] = p[2] - q; return 0; } #endif /********************************************/ /* Another UNIX timer using gettimeofday(). */ /* However, getrusage() is preferred. */ /********************************************/ #ifdef GTODay #include struct timeval tnow; dtime(p) double p[]; { double q; q = p[2]; gettimeofday(&tnow,NULL); p[2] = (double)tnow.tv_sec + (double)tnow.tv_usec * 1.0e-6; p[1] = p[2] - q; return 0; } #endif /*****************************************************/ /* Fujitsu UXP/M timer. */ /* Provided by: Mathew Lim, ANUSF, M DOT Lim AT anu DOT edu DOT au */ /*****************************************************/ #ifdef UXPM #include #include struct tmsu rusage; dtime(p) double p[]; { double q; q = p[2]; timesu(&rusage); p[2] = (double)(rusage.tms_utime) * 1.0e-06; p[1] = p[2] - q; return 0; } #endif /**********************************************/ /* Macintosh (MAC_TMgr) Think C dtime() */ /* requires Think C Language Extensions or */ /* #include in the prefix */ /* provided by Francis H Schiffer 3rd (fhs) */ /* skipschiffer AT genie DOT geis DOT com */ /**********************************************/ #ifdef MAC_TMgr #include #include static TMTask mgrTimer; static Boolean mgrInited = FALSE; static double mgrClock; #define RMV_TIMER RmvTime( (QElemPtr)&mgrTimer ) #define MAX_TIME 1800000000L /* MAX_TIME limits time between calls to */ /* dtime( ) to no more than 30 minutes */ /* this limitation could be removed by */ /* creating a completion routine to sum */ /* 30 minute segments (fhs 1994 feb 9) */ static void Remove_timer( ) { RMV_TIMER; mgrInited = FALSE; } int dtime( p ) double p[]; { if ( mgrInited ) { RMV_TIMER; mgrClock += (MAX_TIME + mgrTimer.tmCount)*1.0e-6; } else { if ( _atexit( &Remove_timer ) == 0 ) mgrInited = TRUE; mgrClock = 0.0; } p[1] = mgrClock - p[2]; p[2] = mgrClock; if ( mgrInited ) { mgrTimer.tmAddr = NULL; mgrTimer.tmCount = 0; mgrTimer.tmWakeUp = 0; mgrTimer.tmReserved = 0; InsTime( (QElemPtr)&mgrTimer ); PrimeTime( (QElemPtr)&mgrTimer, -MAX_TIME ); } return( 0 ); } #endif /***********************************************************/ /* Parsytec GCel timer. */ /* Provided by: Georg Wambach, gw AT informatik DOT uni-koeln DOT de */ /***********************************************************/ #ifdef PARIX #include dtime(p) double p[]; { double q; q = p[2]; p[2] = (double) (TimeNowHigh()) / (double) CLK_TCK_HIGH; p[1] = p[2] - q; return 0; } #endif /************************************************/ /* Sun Solaris POSIX dtime() routine */ /* Provided by: Case Larsen, CTLarsen AT lbl DOT gov */ /************************************************/ #ifdef POSIX #include #include #include #ifdef __hpux #include #define getrusage(a,b) syscall(SYS_getrusage,a,b) #endif struct rusage rusage; dtime(p) double p[]; { double q; q = p[2]; getrusage(RUSAGE_SELF,&rusage); p[2] = (double)(rusage.ru_utime.tv_sec); p[2] = p[2] + (double)(rusage.ru_utime.tv_nsec) * 1.0e-09; p[1] = p[2] - q; return 0; } #endif /****************************************************/ /* Windows NT (32 bit) dtime() routine */ /* Provided by: Piers Haken, piersh AT microsoft DOT com */ /****************************************************/ #ifdef WIN32 #include dtime(p) double p[]; { double q; q = p[2]; p[2] = (double)GetTickCount() * 1.0e-03; p[1] = p[2] - q; return 0; } #endif /*****************************************************/ /* Time according to POSIX.1 - */ /* Ref: "POSIX Programmer's Guide" O'Reilly & Assoc.*/ /*****************************************************/ #ifdef POSIX1 #define _POSIX_SOURCE 1 #include #include #include struct tms tms; dtime(p) double p[]; { double q; times(&tms); q = p[2]; p[2] = (double)tms.tms_utime / (double)CLK_TCK; p[1] = p[2] - q; return 0; } #endif /*------ End flops.c code, say good night Jan! (Sep 1992) ------*/ --------------8CBF3DEDFF22266B20D01CE8--