Mail Archives: djgpp-workers/2013/10/20/18:35:16
X-Authentication-Warning: | delorie.com: mail set sender to djgpp-workers-bounces using -f
|
X-Recipient: | djgpp-workers AT delorie DOT com
|
Message-ID: | <52645811.5020201@gmx.de>
|
Date: | Mon, 21 Oct 2013 00:24:17 +0200
|
From: | Juan Manuel Guerrero <juan DOT guerrero AT gmx DOT de>
|
User-Agent: | Mozilla/5.0 (X11; Linux x86_64; rv:16.0) Gecko/20121025 Thunderbird/16.0.2
|
MIME-Version: | 1.0
|
To: | djgpp-workers AT delorie DOT com
|
Subject: | Re: Implementation of the [l]lrint[f|l] family of functions.
|
References: | <523A2796 DOT 8040908 AT gmx DOT de>
|
In-Reply-To: | <523A2796.8040908@gmx.de>
|
X-Provags-ID: | V03:K0:8CGQVQ9E3St489FF/YFcphlN58RFVySq4qWatvgFmG5jncU89jE
|
| dVx7+KnxzTDKrWN2waJyYvepIgR7eDoMOMerAT7XcIRRfEqsz42xPK5QwujXIW7F/kSfWEw
|
| R1ozBVY8n4ejm5tFN3c55yz9YvmZLeJO8bYLRvqkSIT8PFksCAUfH/4VrebUHhZHdzSruEN
|
| aV/8siOt6A9si4y4lmKrw==
|
Reply-To: | djgpp-workers AT delorie DOT com
|
Am 19.09.2013 00:22, schrieb Juan Manuel Guerrero:
> Below is a patch that shall provide the implementation of the [l]lrint[f|l]
> family of functions in libm.a. Some test cases have been added. I have
> compiled and tested the code with gcc473 and the djcross-gcc481.
> As usual suggestions, objections and comments are welcome.
[snip]
OFYI, committed the patch below.
Regards,
Juan M. Guerrero
2013-09-21 Juan Manuel Guerrero <juan DOT guerrero AT gmx DOT de>
* /djgpp/tests/libc/c99/math/t-llrint.c: Check for llrint.
* /djgpp/tests/libc/c99/math/t-llrintl.c: Check for llrintl.
* /djgpp/tests/libc/c99/math/t-lrint.c: Check for llrintl.
* /djgpp/tests/libc/c99/math/t-lrintf.c: Check for llrintl.
* /djgpp/tests/libc/c99/math/t-lrintl.c: Check for llrintl.
* djgpp/tests/cygnus/makefile: [l]lrint[f|l] function checks added to goal list.
2013-09-19 Juan Manuel Guerrero <juan DOT guerrero AT gmx DOT de>
* djgpp/src/libc/c99/math/llrint.c: Assembler implementation of llrint.
* djgpp/src/libc/c99/math/llrintf.c: Assembler implementation of llrintf.
* djgpp/src/libc/c99/math/llrintl.c: Assembler implementation of llrintl.
* djgpp/src/libc/c99/math/lrint.c: Assembler implementation of lrint.
* djgpp/src/libc/c99/math/lrintf.c: Assembler implementation of lrintf.
* djgpp/src/libc/c99/math/lrintl.c: Assembler implementation of lrintl.
* djgpp/src/libm/math/makefile: [l]lrint[f|l] family of functions added to goal list.
* djgpp/src/libc/c99/math/llrint.txh: Added documentation about llrint.
* djgpp/src/libc/c99/math/llrintf.txh: Added documentation about llrintf.
* djgpp/src/libc/c99/math/llrintl.txh: Added documentation about llrintl.
* djgpp/src/libc/c99/math/lrint.txh: Added documentation about lrint.
* djgpp/src/libc/c99/math/lrintf.txh: Added documentation about lrintf.
* djgpp/src/libc/c99/math/lrintl.txh: Added documentation about lrintl.
* djgpp/src/docs/kb/wc204.txi: Info about [l]lrint[f|l] family of functions added.
2013-09-12 Juan Manuel Guerrero <juan DOT guerrero AT gmx DOT de>
* djgpp/include/math.h: Prototypes of llrintl function added.
* djgpp/include/libm/math.h: Prototypes of llrintl function added.
* djgpp/src/libm/math/llrintl.c: Implementation of llrintl.
* djgpp/src/libm/math/makefile: llrintl function added to goal list.
* djgpp/src/libm/math/math.texi: Entry of llrintl function added.
* djgpp/tests/cygnus/t-llrintl.c: Check for llrintl.
* djgpp/tests/cygnus/makefile: llrintl function added to goal list.
* djgpp/src/docs/kb/wc204.txi: Info about [l]lrint[f|l] family of functions added.
2013-09-11 Juan Manuel Guerrero <juan DOT guerrero AT gmx DOT de>
* djgpp/include/math.h: Prototypes of lrintl function added.
* djgpp/include/libm/math.h: Prototypes of lrintl functions added.
* djgpp/src/libm/math/lrintl.c: Implementation of lrintl.
* djgpp/src/libm/math/makefile: lrintl functions added to goal list.
* djgpp/src/libm/math/math.texi: Entry of lrintl function added.
* djgpp/tests/cygnus/t-lrintl.c: Check for lrintl.
* djgpp/tests/cygnus/makefile: lrintl function added to goal list.
2013-09-07 Juan Manuel Guerrero <juan DOT guerrero AT gmx DOT de>
* djgpp/include/math.h: Prototypes of [l]lrint functions added.
* djgpp/include/libm/math.h: Prototypes of [l]lrint functions added.
* djgpp/src/libm/math/llrint.c: Implementation of llrint.
* djgpp/src/libm/math/lrint.c: Implementation of lrint.
* djgpp/src/libm/math/makefile: [l]lrint functions added to goal list.
* djgpp/src/libm/math/math.texi: Entries of [l]lrint functions added.
* djgpp/tests/cygnus/t-lrint.c: Check for lrint.
* djgpp/tests/cygnus/makefile: lrint function added to goal list.
2013-09-05 Juan Manuel Guerrero <juan DOT guerrero AT gmx DOT de>
* djgpp/include/math.h: Prototypes of [l]lrintf functions added.
* djgpp/include/libm/math.h: Prototypes of [l]lrintf functions added.
* djgpp/src/libm/math/lrintf.c: Implementation of lrintf.
* djgpp/src/libm/math/llrintf.c: Implementation of llrintf.
* djgpp/src/libm/math/makefile: [l]lrintf functions added to goal list.
* djgpp/src/libm/math/math.texi: Entries of [l]lrintf of functions added.
* djgpp/tests/cygnus/t-lrintf.c: Check for lrintf.
* djgpp/tests/cygnus/makefile: lrintf functions added to goal list.
diff -aprNU5 djgpp.orig/include/libm/math.h djgpp/include/libm/math.h
--- djgpp.orig/include/libm/math.h 2013-10-14 22:37:24 +0100
+++ djgpp/include/libm/math.h 2013-10-14 22:39:38 +0100
@@ -156,10 +156,16 @@ extern double fmod __P((double, double))
#if !defined(__STRICT_ANSI__) || defined(__cplusplus) || \
defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
/* ISO C99 types and macros. */
+extern long long int llrintf __P((float));
+extern long long int llrint __P((double));
+extern long long int llrintl __P((long double));
+extern long int lrintf __P((float));
+extern long int lrint __P((double));
+extern long int lrintl __P((long double));
extern float truncf __P((float));
extern double trunc __P((double));
extern long double truncl __P((long double));
#endif /* !defined (__STRICT_ANSI__) || defined(__cplusplus)
|| defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L */
diff -aprNU5 djgpp.orig/include/math.h djgpp/include/math.h
--- djgpp.orig/include/math.h 2013-10-14 22:37:24 +0100
+++ djgpp/include/math.h 2013-10-14 22:39:38 +0100
@@ -189,10 +189,14 @@ extern double copysign(double, double);
extern int ilogb(double);
extern double rint(double);
extern double scalbn(double, int);
extern double trunc(double);
extern long double truncl(long double);
+extern long int lrint(double);
+extern long int lrintl(long double);
+extern long long int llrint(double);
+extern long long int llrintl(long double);
extern float erff(float);
extern float erfcf(float);
extern float hypotf(float, float);
extern float lgammaf(float);
extern float acoshf(float);
@@ -208,10 +212,12 @@ extern int ilogbf(float);
extern float rintf(float);
extern float scalbnf(float, int);
extern float expm1f(float);
extern float log1pf(float);
extern float truncf(float);
+extern long int lrintf(float);
+extern long long int llrintf(float);
/* End libm.a. */
#endif /* (__STDC_VERSION__ >= 199901L) || !__STRICT_ANSI__ */
diff -aprNU5 djgpp.orig/src/docs/kb/wc204.txi djgpp/src/docs/kb/wc204.txi
--- djgpp.orig/src/docs/kb/wc204.txi 2013-09-12 23:24:52 +0100
+++ djgpp/src/docs/kb/wc204.txi 2013-10-14 22:39:38 +0100
@@ -1308,5 +1308,17 @@ were added to comply with the @acronym{C
@findex fputs AT r{, and stream error condition}
Openning a file stream in the wrong mode referring to the following
input/output operation (e.g.: openning stream in read only mode and
then writing to it), will trigger a stream error condition that will
set an error indicator. This error indicator can be tested using @code{ferror}.
+
+@cindex @acronym{C99} compliance, @code{math.h}
+@findex lrintf AT r{ added}
+@findex lrint AT r{ added}
+@findex lrintl AT r{ added}
+@findex llrintf AT r{ added}
+@findex llrint AT r{ added}
+@findex llrintl AT r{ added}
+The @acronym{C99} functions @code{lrintf}, @code{lrint}, @code{lrintl}, @code{llrintf},
+@code{llrint} and @code{llrintl} were added to comply with the @acronym{C99} standard.
+These functions are available in two versions. One fast assembler version
+in @file{libc.a} and one accurate in @file{libm.a}.
diff -aprNU5 djgpp.orig/src/libc/c99/math/llrint.c djgpp/src/libc/c99/math/llrint.c
--- djgpp.orig/src/libc/c99/math/llrint.c 1970-01-01 01:00:00 +0100
+++ djgpp/src/libc/c99/math/llrint.c 2013-10-14 22:39:38 +0100
@@ -0,0 +1,14 @@
+/* Copyright (C) 2013 DJ Delorie, see COPYING.DJ for details */
+
+#include <math.h>
+
+
+long long int
+llrint(double x)
+{
+ long long int result;
+
+ asm("fistpll %0" : "=m" (result) : "t" (x) : "st");
+
+ return result;
+}
diff -aprNU5 djgpp.orig/src/libc/c99/math/llrint.txh djgpp/src/libc/c99/math/llrint.txh
--- djgpp.orig/src/libc/c99/math/llrint.txh 1970-01-01 01:00:00 +0100
+++ djgpp/src/libc/c99/math/llrint.txh 2013-10-14 22:39:38 +0100
@@ -0,0 +1,38 @@
+@c ----------------------------------------------------------------------
+@node llrint, math
+@vindex llrint
+@subheading Syntax
+
+@example
+#include <math.h>
+
+long long int llrint(double x);
+@end example
+
+@subheading Description
+
+The @code{llrint} functions round their argument to the nearest integer value,
+using the current rounding direction.
+
+Note that unlike @code{rint}, etc., the return type of these functions differs
+from that of their arguments.
+
+The function do not set @code{errno}.
+
+@subheading Return Value
+
+Which floating-point error reporting methods are available.
+The function returns the rounded integer value of @var{x}.
+If @var{x} is @code{NaN} or an infinity, or the rounded value
+is too large to be stored in a long then a domain error occurs,
+and the return value is unspecified.
+
+@subheading Portability
+
+@portability ansi-c99, posix-1003.1-2001
+
+@subheading Example
+
+@example
+long long int result = llrint(3.1415926535897932384626433832795);
+@end example
diff -aprNU5 djgpp.orig/src/libc/c99/math/llrintf.c djgpp/src/libc/c99/math/llrintf.c
--- djgpp.orig/src/libc/c99/math/llrintf.c 1970-01-01 01:00:00 +0100
+++ djgpp/src/libc/c99/math/llrintf.c 2013-10-14 22:39:38 +0100
@@ -0,0 +1,14 @@
+/* Copyright (C) 2013 DJ Delorie, see COPYING.DJ for details */
+
+#include <math.h>
+
+
+long long int
+llrintf(float x)
+{
+ long long int result;
+
+ asm("fistpll %0" : "=m" (result) : "t" (x) : "st");
+
+ return result;
+}
diff -aprNU5 djgpp.orig/src/libc/c99/math/llrintf.txh djgpp/src/libc/c99/math/llrintf.txh
--- djgpp.orig/src/libc/c99/math/llrintf.txh 1970-01-01 01:00:00 +0100
+++ djgpp/src/libc/c99/math/llrintf.txh 2013-10-14 22:39:38 +0100
@@ -0,0 +1,38 @@
+@c ----------------------------------------------------------------------
+@node llrintf, math
+@vindex llrintf
+@subheading Syntax
+
+@example
+#include <math.h>
+
+long long int llrintf(float x);
+@end example
+
+@subheading Description
+
+The @code{llrintf} functions round their argument to the nearest integer value,
+using the current rounding direction.
+
+Note that unlike @code{rint}, etc., the return type of these functions differs
+from that of their arguments.
+
+The function do not set @code{errno}.
+
+@subheading Return Value
+
+Which floating-point error reporting methods are available.
+The function returns the rounded integer value of @var{x}.
+If @var{x} is @code{NaN} or an infinity, or the rounded value
+is too large to be stored in a long then a domain error occurs,
+and the return value is unspecified.
+
+@subheading Portability
+
+@portability ansi-c99, posix-1003.1-2001
+
+@subheading Example
+
+@example
+long long int result = llrintf(3.1415926535897932384626433832795);
+@end example
diff -aprNU5 djgpp.orig/src/libc/c99/math/llrintl.c djgpp/src/libc/c99/math/llrintl.c
--- djgpp.orig/src/libc/c99/math/llrintl.c 1970-01-01 01:00:00 +0100
+++ djgpp/src/libc/c99/math/llrintl.c 2013-10-14 22:39:40 +0100
@@ -0,0 +1,14 @@
+/* Copyright (C) 2013 DJ Delorie, see COPYING.DJ for details */
+
+#include <math.h>
+
+
+long long int
+llrintl(long double x)
+{
+ long long int result;
+
+ asm("fistpll %0" : "=m" (result) : "t" (x) : "st");
+
+ return result;
+}
diff -aprNU5 djgpp.orig/src/libc/c99/math/llrintl.txh djgpp/src/libc/c99/math/llrintl.txh
--- djgpp.orig/src/libc/c99/math/llrintl.txh 1970-01-01 01:00:00 +0100
+++ djgpp/src/libc/c99/math/llrintl.txh 2013-10-14 22:39:40 +0100
@@ -0,0 +1,38 @@
+@c ----------------------------------------------------------------------
+@node llrintl, math
+@vindex llrintl
+@subheading Syntax
+
+@example
+#include <math.h>
+
+long long int llrintl(long double x);
+@end example
+
+@subheading Description
+
+The @code{llrintl} functions round their argument to the nearest integer value,
+using the current rounding direction.
+
+Note that unlike @code{rint}, etc., the return type of these functions differs
+from that of their arguments.
+
+The function do not set @code{errno}.
+
+@subheading Return Value
+
+Which floating-point error reporting methods are available.
+The function returns the rounded integer value of @var{x}.
+If @var{x} is @code{NaN} or an infinity, or the rounded value
+is too large to be stored in a long then a domain error occurs,
+and the return value is unspecified.
+
+@subheading Portability
+
+@portability ansi-c99, posix-1003.1-2001
+
+@subheading Example
+
+@example
+long long int result = llrintl(3.1415926535897932384626433832795);
+@end example
diff -aprNU5 djgpp.orig/src/libc/c99/math/lrint.c djgpp/src/libc/c99/math/lrint.c
--- djgpp.orig/src/libc/c99/math/lrint.c 1970-01-01 01:00:00 +0100
+++ djgpp/src/libc/c99/math/lrint.c 2013-10-14 22:39:40 +0100
@@ -0,0 +1,14 @@
+/* Copyright (C) 2013 DJ Delorie, see COPYING.DJ for details */
+
+#include <math.h>
+
+
+long int
+lrint(double x)
+{
+ long int result;
+
+ asm("fistpl %0" : "=m" (result) : "t" (x) : "st");
+
+ return result;
+}
diff -aprNU5 djgpp.orig/src/libc/c99/math/lrint.txh djgpp/src/libc/c99/math/lrint.txh
--- djgpp.orig/src/libc/c99/math/lrint.txh 1970-01-01 01:00:00 +0100
+++ djgpp/src/libc/c99/math/lrint.txh 2013-10-14 22:39:40 +0100
@@ -0,0 +1,38 @@
+@c ----------------------------------------------------------------------
+@node lrint, math
+@vindex lrint
+@subheading Syntax
+
+@example
+#include <math.h>
+
+long int lrint(double x);
+@end example
+
+@subheading Description
+
+The @code{lrint} functions round their argument to the nearest integer value,
+using the current rounding direction.
+
+Note that unlike @code{rint}, etc., the return type of these functions differs
+from that of their arguments.
+
+The function do not set @code{errno}.
+
+@subheading Return Value
+
+Which floating-point error reporting methods are available.
+The function returns the rounded integer value of @var{x}.
+If @var{x} is @code{NaN} or an infinity, or the rounded value
+is too large to be stored in a long then a domain error occurs,
+and the return value is unspecified.
+
+@subheading Portability
+
+@portability ansi-c99, posix-1003.1-2001
+
+@subheading Example
+
+@example
+long int result = lrint(3.1415926535897932384626433832795);
+@end example
diff -aprNU5 djgpp.orig/src/libc/c99/math/lrintf.c djgpp/src/libc/c99/math/lrintf.c
--- djgpp.orig/src/libc/c99/math/lrintf.c 1970-01-01 01:00:00 +0100
+++ djgpp/src/libc/c99/math/lrintf.c 2013-10-14 22:39:40 +0100
@@ -0,0 +1,14 @@
+/* Copyright (C) 2013 DJ Delorie, see COPYING.DJ for details */
+
+#include <math.h>
+
+
+long int
+lrintf(float x)
+{
+ long int result;
+
+ asm("fistpl %0" : "=m" (result) : "t" (x) : "st");
+
+ return result;
+}
diff -aprNU5 djgpp.orig/src/libc/c99/math/lrintf.txh djgpp/src/libc/c99/math/lrintf.txh
--- djgpp.orig/src/libc/c99/math/lrintf.txh 1970-01-01 01:00:00 +0100
+++ djgpp/src/libc/c99/math/lrintf.txh 2013-10-14 22:39:40 +0100
@@ -0,0 +1,38 @@
+@c ----------------------------------------------------------------------
+@node lrintf, math
+@vindex lrintf
+@subheading Syntax
+
+@example
+#include <math.h>
+
+long int lrintf(float x);
+@end example
+
+@subheading Description
+
+The @code{lrintf} functions round their argument to the nearest integer value,
+using the current rounding direction.
+
+Note that unlike @code{rint}, etc., the return type of these functions differs
+from that of their arguments.
+
+The function do not set @code{errno}.
+
+@subheading Return Value
+
+Which floating-point error reporting methods are available.
+The function returns the rounded integer value of @var{x}.
+If @var{x} is @code{NaN} or an infinity, or the rounded value
+is too large to be stored in a long then a domain error occurs,
+and the return value is unspecified.
+
+@subheading Portability
+
+@portability ansi-c99, posix-1003.1-2001
+
+@subheading Example
+
+@example
+long int result = lrintf(3.1415926535897932384626433832795);
+@end example
diff -aprNU5 djgpp.orig/src/libc/c99/math/lrintl.c djgpp/src/libc/c99/math/lrintl.c
--- djgpp.orig/src/libc/c99/math/lrintl.c 1970-01-01 01:00:00 +0100
+++ djgpp/src/libc/c99/math/lrintl.c 2013-10-14 22:39:40 +0100
@@ -0,0 +1,14 @@
+/* Copyright (C) 2013 DJ Delorie, see COPYING.DJ for details */
+
+#include <math.h>
+
+
+long int
+lrintl(long double x)
+{
+ long int result;
+
+ asm("fistpl %0" : "=m" (result) : "t" (x) : "st");
+
+ return result;
+}
diff -aprNU5 djgpp.orig/src/libc/c99/math/lrintl.txh djgpp/src/libc/c99/math/lrintl.txh
--- djgpp.orig/src/libc/c99/math/lrintl.txh 1970-01-01 01:00:00 +0100
+++ djgpp/src/libc/c99/math/lrintl.txh 2013-10-14 22:39:40 +0100
@@ -0,0 +1,38 @@
+@c ----------------------------------------------------------------------
+@node lrintl, math
+@vindex lrintl
+@subheading Syntax
+
+@example
+#include <math.h>
+
+long int lrintl(long double x);
+@end example
+
+@subheading Description
+
+The @code{lrintl} functions round their argument to the nearest integer value,
+using the current rounding direction.
+
+Note that unlike @code{rint}, etc., the return type of these functions differs
+from that of their arguments.
+
+The function do not set @code{errno}.
+
+@subheading Return Value
+
+Which floating-point error reporting methods are available.
+The function returns the rounded integer value of @var{x}.
+If @var{x} is @code{NaN} or an infinity, or the rounded value
+is too large to be stored in a long then a domain error occurs,
+and the return value is unspecified.
+
+@subheading Portability
+
+@portability ansi-c99, posix-1003.1-2001
+
+@subheading Example
+
+@example
+long int result = lrintl(3.1415926535897932384626433832795);
+@end example
diff -aprNU5 djgpp.orig/src/libc/c99/math/makefile djgpp/src/libc/c99/math/makefile
--- djgpp.orig/src/libc/c99/math/makefile 2008-04-06 23:06:40 +0100
+++ djgpp/src/libc/c99/math/makefile 2013-10-20 13:53:16 +0100
@@ -1,12 +1,19 @@
+# Copyright (C) 2013 DJ Delorie, see COPYING.DJ for details
# Copyright (C) 2003 DJ Delorie, see COPYING.DJ for details
# Copyright (C) 2002 DJ Delorie, see COPYING.DJ for details
TOP=../..
SRC += errhandl.c
SRC += hugevalf.c
SRC += hugevall.c
+SRC += lrintf.c
+SRC += lrint.c
+SRC += lrintl.c
+SRC += llrintf.c
+SRC += llrint.c
+SRC += llrintl.c
SRC += nan_def.c
SRC += nan.c
SRC += nanf.c
SRC += nanl.c
SRC += fpclassf.S
diff -aprNU5 djgpp.orig/src/libm/math/llrint.c djgpp/src/libm/math/llrint.c
--- djgpp.orig/src/libm/math/llrint.c 1970-01-01 01:00:00 +0100
+++ djgpp/src/libm/math/llrint.c 2013-10-20 13:48:56 +0100
@@ -0,0 +1,128 @@
+/* Copyright (C) 2013 DJ Delorie, see COPYING.DJ for details */
+
+/*
+FUNCTION
+<<llrint>>, <<llrintf>>, <<llrintl>>--round to nearest integer value using current rounding direction
+INDEX
+ llrint
+INDEX
+ llrintf
+INDEX
+ llrintl
+
+ANSI_SYNOPSIS
+ #include <math.h>
+ long long int llrint(double <[x]>);
+ long long int llrintf(float <[x]>);
+ long long int llrintl(long double <[x]>);
+
+DESCRIPTION
+ The <<llrint>> functions round their argument to the nearest integer value,
+ using the current rounding direction.
+
+ Note that unlike <<rint>>, etc., the return type of these functions differs
+ from that of their arguments.
+
+RETURNS
+ These functions return the rounded integer value of <[x]>.
+ If <[x]> is NaN or an infinity, or the rounded value is too large
+ to be stored in a long then a domain error occurs, and the return
+ value is unspecified.
+
+ These functions do not set errno.
+
+PORTABILITY
+ANSI C, POSIX
+
+*/
+
+#include <stdint.h>
+#include <math.h>
+#include <libc/ieee.h>
+
+#if defined (__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && __GNUC_MINOR__ >= 8))
+# define __gnuc_extension__ __extension__
+#else
+# define __gnuc_extension__
+#endif
+
+#define DOUBLE_BIAS (0x3FFU)
+#define BIN_DIGITS_IN_FRACTION (52) /* Amount of binary digits in fraction part of mantissa. */
+#define BIN_DIGITS_IN_MANTISSAH (20) /* Amount of binary digits in msw of the fraction part of mantissa. */
+#define ALL_DIGITS_ARE_SIGNIFICANT(exp) ((exp) > (BIN_DIGITS_IN_FRACTION - 1))
+#define NO_SIGNIFICANT_DIGITS_IN_MANTISSAL(exp) ((exp) < BIN_DIGITS_IN_MANTISSAH)
+#define MAGNITUDE_IS_TOO_LARGE(exp) ((exp) > (int)(sizeof(long long int) * 8) - 2)
+#define MAGNITUDE_IS_LESS_THAN_ONE(exp) ((exp) < 0)
+#define MAGNITUDE_IS_LESS_THAN_ONE_HALF(exp) ((exp) < -1)
+#define IS_ZERO(num) ((((num).dt.mantissah & ~(1UL << BIN_DIGITS_IN_MANTISSAH)) == 0) && (((num).dt.mantissal & 0xFFFFFFFFUL) == 0) && (((num).dt.exponent & 0x07FFU) == 0))
+
+#define ROUND_MANTISSAH(num, unbiased_exponent) ((long long int)(((uint64_t)(num).dt.mantissah | 0x00100000ULL) >> (BIN_DIGITS_IN_MANTISSAH - (unbiased_exponent))))
+#define ROUND_MANTISSAH_TO_INTEGER(num, unbiased_exponent) \
+(__gnuc_extension__ \
+ ({ \
+ (num).d = two52[(num).dt.sign] + x; \
+ (num).d -= two52[(num).dt.sign]; \
+ (unbiased_exponent) = (num).dt.exponent - DOUBLE_BIAS; \
+ \
+ result = MAGNITUDE_IS_LESS_THAN_ONE((unbiased_exponent)) || IS_ZERO((num)) ? 0 : ROUND_MANTISSAH((num), (unbiased_exponent)); \
+ (long long int)result; \
+ }) \
+)
+
+#define SHIFT_LEFT_MANTISSAH(num, unbiased_exponent) (((uint64_t)(num).dt.mantissah | 0x00100000ULL) << ((unbiased_exponent) - BIN_DIGITS_IN_MANTISSAH))
+#define CONVERT_MANTISSA_TO_INTEGER(num, unbiased_exponent) ((long long int)(SHIFT_LEFT_MANTISSAH(num, unbiased_exponent) | (num).dt.mantissal << ((unbiased_exponent) - BIN_DIGITS_IN_FRACTION)))
+#define ROUND_MANTISSA(num, unbiased_exponent) ((long long int)(SHIFT_LEFT_MANTISSAH(num, unbiased_exponent) | (num).dt.mantissal >> (BIN_DIGITS_IN_FRACTION - (unbiased_exponent))))
+#define ROUND_MANTISSA_TO_INTEGER(num, unbiased_exponent) \
+(__gnuc_extension__ \
+ ({ \
+ (num).d = two52[(num).dt.sign] + x; \
+ (num).d -= two52[(num).dt.sign]; \
+ (unbiased_exponent) = (num).dt.exponent - DOUBLE_BIAS; \
+ \
+ result = ((unbiased_exponent) == BIN_DIGITS_IN_MANTISSAH) ? (long long int)(num).dt.mantissah : ROUND_MANTISSA((num), (unbiased_exponent)); \
+ (long long int)result; \
+ }) \
+)
+
+
+/* Adding a double, x, to 2^52 will cause the result to be rounded based on
+ the fractional part of x, according to the implementation's current rounding
+ mode. 2^52 is the smallest double that can be represented using all 52 significant
+ digits. */
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+two52[2] = {
+ 4503599627370496, /* 0, 0x3FFU + 0x034U, 0x00000U, 0x00000000U */
+ -4503599627370496 /* 1, 0x3FFU + 0x034U, 0x00000U, 0x00000000U */
+};
+
+#ifdef __STDC__
+long long int
+llrint(double x)
+#else
+long long int
+llrint(x)
+double x;
+#endif
+{
+ _double_union_t ieee_value;
+ int unbiased_exponent;
+ long long int result;
+
+
+ ieee_value.d = x;
+ unbiased_exponent = ieee_value.dt.exponent - DOUBLE_BIAS;
+
+ if (MAGNITUDE_IS_TOO_LARGE(unbiased_exponent)) /* The number is too large. */
+ return (long long int)x; /* It is left implementation defined what happens. */
+ else if (NO_SIGNIFICANT_DIGITS_IN_MANTISSAL(unbiased_exponent))
+ result = MAGNITUDE_IS_LESS_THAN_ONE_HALF(unbiased_exponent) ? 0 : ROUND_MANTISSAH_TO_INTEGER(ieee_value, unbiased_exponent);
+ else
+ result = ALL_DIGITS_ARE_SIGNIFICANT(unbiased_exponent) ? CONVERT_MANTISSA_TO_INTEGER(ieee_value, unbiased_exponent) /* >= 2^63 is already an exact integer. */
+ : ROUND_MANTISSA_TO_INTEGER(ieee_value, unbiased_exponent);
+
+ return ieee_value.dt.sign ? -result : result;
+}
diff -aprNU5 djgpp.orig/src/libm/math/llrintf.c djgpp/src/libm/math/llrintf.c
--- djgpp.orig/src/libm/math/llrintf.c 1970-01-01 01:00:00 +0100
+++ djgpp/src/libm/math/llrintf.c 2013-10-20 13:48:56 +0100
@@ -0,0 +1,78 @@
+/* Copyright (C) 2013 DJ Delorie, see COPYING.DJ for details */
+
+#include <stdint.h>
+#include <math.h>
+#include <libc/ieee.h>
+
+#if defined (__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && __GNUC_MINOR__ >= 8))
+# define __gnuc_extension__ __extension__
+#else
+# define __gnuc_extension__
+#endif
+
+#define FLOAT_BIAS (0x7FU)
+#define BIN_DIGITS_IN_FRACTION (23) /* Amount of binary digits in fraction part of mantissa. */
+#define ALL_DIGITS_ARE_SIGNIFICANT(exp) ((exp) > (BIN_DIGITS_IN_FRACTION - 1))
+#define MAGNITUDE_IS_TOO_LARGE(exp) ((exp) > (int)(sizeof(long long int) * 8) - 2)
+#define MAGNITUDE_IS_LESS_THAN_ONE(exp) ((exp) < 0)
+#define MAGNITUDE_IS_LESS_THAN_ONE_HALF(exp) ((exp) < -1)
+#define IS_ZERO(num) ((((num).ft.mantissa & ~(1ULL << BIN_DIGITS_IN_FRACTION)) == 0) && (((num).ft.exponent & 0xFFU) == 0))
+#define CONVERT_MANTISSA_TO_INTEGER(num, unbiased_exponent) ((long long int)((uint32_t)(num).ft.mantissa | 0x00800000ULL) << ((unbiased_exponent) - BIN_DIGITS_IN_FRACTION))
+#define ROUND_MANTISSA(num, unbiased_exponent) ((long long int)((uint32_t)(num).ft.mantissa | 0x00800000ULL) >> (BIN_DIGITS_IN_FRACTION - (unbiased_exponent)))
+#define ROUND_MANTISSA_TO_INTEGER(num, unbiased_exponent) \
+(__gnuc_extension__ \
+ ({ \
+ (num).f = two23[(num).ft.sign] + x; \
+ (num).f -= two23[(num).ft.sign]; \
+ (unbiased_exponent) = (num).ft.exponent - FLOAT_BIAS; \
+ \
+ result = MAGNITUDE_IS_LESS_THAN_ONE((unbiased_exponent)) || IS_ZERO((num)) ? 0 : ROUND_MANTISSA((num), (unbiased_exponent)); \
+ (long long int)result; \
+ }) \
+)
+
+
+/* Adding a float, x, to 2^23 will cause the result to be rounded based on
+ the fractional part of x, according to the implementation's current rounding
+ mode. 2^23 is the smallest float that can be represented using all 23 significant
+ digits. */
+#ifdef __STDC__
+static const float
+#else
+static float
+#endif
+two23[2] = {
+ 8388608, /* 0, 0x7FU + 0x17U, 0x000000U */
+ -8388608 /* 1, 0x7FU + 0x17U, 0x000000U */
+};
+
+#ifdef __STDC__
+long long int
+llrintf(float x)
+#else
+long long int
+llrintf(x)
+float x;
+#endif
+{
+ _float_union_t ieee_value;
+ int unbiased_exponent;
+ long long int result;
+
+
+ ieee_value.f = x;
+ unbiased_exponent = ieee_value.ft.exponent - FLOAT_BIAS;
+
+ if (MAGNITUDE_IS_TOO_LARGE(unbiased_exponent)) /* The number is too large. */
+ return (long long int)x; /* It is left implementation defined what happens. */
+ else
+ {
+ if (MAGNITUDE_IS_LESS_THAN_ONE_HALF(unbiased_exponent))
+ result = 0;
+ else
+ result = ALL_DIGITS_ARE_SIGNIFICANT(unbiased_exponent) ? CONVERT_MANTISSA_TO_INTEGER(ieee_value, unbiased_exponent) /* >= 2^23 is already an exact integer. */
+ : ROUND_MANTISSA_TO_INTEGER(ieee_value, unbiased_exponent);
+
+ return ieee_value.ft.sign ? -result : result;
+ }
+}
diff -aprNU5 djgpp.orig/src/libm/math/llrintl.c djgpp/src/libm/math/llrintl.c
--- djgpp.orig/src/libm/math/llrintl.c 1970-01-01 01:00:00 +0100
+++ djgpp/src/libm/math/llrintl.c 2013-10-20 13:48:56 +0100
@@ -0,0 +1,92 @@
+/* Copyright (C) 2013 DJ Delorie, see COPYING.DJ for details */
+
+#include <stdint.h>
+#include <math.h>
+#include <libc/ieee.h>
+
+#if defined (__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && __GNUC_MINOR__ >= 8))
+# define __gnuc_extension__ __extension__
+#else
+# define __gnuc_extension__
+#endif
+
+#define LONG_DOUBLE_BIAS (0x3FFFU)
+#define BIN_DIGITS_IN_FRACTION (63) /* Amount of binary digits in fraction part of mantissa. */
+#define BIN_DIGITS_IN_MANTISSAH (31) /* Amount of binary digits in msw of the fraction part of mantissa. */
+#define ALL_DIGITS_ARE_SIGNIFICANT(exp) ((exp) > (BIN_DIGITS_IN_FRACTION - 1))
+#define NO_SIGNIFICANT_DIGITS_IN_MANTISSAL(exp) ((exp) < BIN_DIGITS_IN_MANTISSAH)
+#define MAGNITUDE_IS_TOO_LARGE(exp) ((exp) > (int)(sizeof(long long int) * 8) - 2)
+#define MAGNITUDE_IS_LESS_THAN_ONE(exp) ((exp) < 0)
+#define MAGNITUDE_IS_LESS_THAN_ONE_HALF(exp) ((exp) < -1)
+#define IS_ZERO(num) ((((num).ldt.mantissah & 0xFFFFFFFFUL) == 0) && (((num).ldt.mantissal & 0xFFFFFFFFUL) == 0) && (((num).ldt.exponent & 0x7FFFU) == 0))
+
+#define ROUND_MANTISSAH(num, unbiased_exponent) ((long long int)((uint64_t)(num).ldt.mantissah >> (BIN_DIGITS_IN_MANTISSAH - (unbiased_exponent))))
+#define ROUND_MANTISSAH_TO_INTEGER(num, unbiased_exponent) \
+(__gnuc_extension__ \
+ ({ \
+ (num).ld = two63[(num).ldt.sign] + x; \
+ (num).ld -= two63[(num).ldt.sign]; \
+ (unbiased_exponent) = (num).ldt.exponent - LONG_DOUBLE_BIAS; \
+ \
+ result = MAGNITUDE_IS_LESS_THAN_ONE((unbiased_exponent)) || IS_ZERO((num)) ? 0 : ROUND_MANTISSAH((num), (unbiased_exponent)); \
+ (long long int)result; \
+ }) \
+)
+
+#define SHIFT_LEFT_MANTISSAH(num, unbiased_exponent) ((uint64_t)(num).ldt.mantissah << ((unbiased_exponent) - BIN_DIGITS_IN_MANTISSAH))
+#define CONVERT_MANTISSA_TO_INTEGER(num, unbiased_exponent) ((long long int)(SHIFT_LEFT_MANTISSAH(num, unbiased_exponent) | (num).ldt.mantissal << ((unbiased_exponent) - BIN_DIGITS_IN_FRACTION)))
+#define ROUND_MANTISSA(num, unbiased_exponent) ((long long int)(SHIFT_LEFT_MANTISSAH(num, unbiased_exponent) | (num).ldt.mantissal >> (BIN_DIGITS_IN_FRACTION - (unbiased_exponent))))
+#define ROUND_MANTISSA_TO_INTEGER(num, unbiased_exponent) \
+(__gnuc_extension__ \
+ ({ \
+ (num).ld = two63[(num).ldt.sign] + x; \
+ (num).ld -= two63[(num).ldt.sign]; \
+ (unbiased_exponent) = (num).ldt.exponent - LONG_DOUBLE_BIAS; \
+ \
+ result = ((unbiased_exponent) == BIN_DIGITS_IN_MANTISSAH) ? (long long int)(num).ldt.mantissah : ROUND_MANTISSA((num), (unbiased_exponent)); \
+ (long long int)result; \
+ }) \
+)
+
+
+/* Adding a long double, x, to 2^63 will cause the result to be rounded based on
+ the fractional part of x, according to the implementation's current rounding
+ mode. 2^63 is the smallest long double that can be represented using all 63
+ significant digits. */
+#ifdef __STDC__
+static const long double
+#else
+static long double
+#endif
+two63[2] = {
+ 9.223372036854775808E+18, /* 0, 0x3FFFE + 0x003F, 0x80000000U, 0x00000000U */
+ -9.223372036854775808E+18 /* 1, 0x3FFFE + 0x003F, 0x80000000U, 0x00000000U */
+};
+
+#ifdef __STDC__
+long long int
+llrintl(long double x)
+#else
+long long int
+llrintl(x)
+long double x;
+#endif
+{
+ _longdouble_union_t ieee_value;
+ int unbiased_exponent;
+ long long int result;
+
+
+ ieee_value.ld = x;
+ unbiased_exponent = ieee_value.ldt.exponent - LONG_DOUBLE_BIAS;
+
+ if (MAGNITUDE_IS_TOO_LARGE(unbiased_exponent)) /* The number is too large. */
+ return (long long int)x; /* It is left implementation defined what happens. */
+ else if (NO_SIGNIFICANT_DIGITS_IN_MANTISSAL(unbiased_exponent))
+ result = MAGNITUDE_IS_LESS_THAN_ONE_HALF(unbiased_exponent) ? 0 : ROUND_MANTISSAH_TO_INTEGER(ieee_value, unbiased_exponent);
+ else
+ result = ALL_DIGITS_ARE_SIGNIFICANT(unbiased_exponent) ? CONVERT_MANTISSA_TO_INTEGER(ieee_value, unbiased_exponent)
+ : ROUND_MANTISSA_TO_INTEGER(ieee_value, unbiased_exponent);
+
+ return ieee_value.ldt.sign ? -result : result;
+}
diff -aprNU5 djgpp.orig/src/libm/math/lrint.c djgpp/src/libm/math/lrint.c
--- djgpp.orig/src/libm/math/lrint.c 1970-01-01 01:00:00 +0100
+++ djgpp/src/libm/math/lrint.c 2013-10-20 13:48:56 +0100
@@ -0,0 +1,128 @@
+/* Copyright (C) 2013 DJ Delorie, see COPYING.DJ for details */
+
+/*
+FUNCTION
+<<lrint>>, <<lrintf>>, <<lrintl>>--round to nearest integer value using current rounding direction
+INDEX
+ lrint
+INDEX
+ lrintf
+INDEX
+ lrintl
+
+ANSI_SYNOPSIS
+ #include <math.h>
+ long int lrint(double <[x]>);
+ long int lrintf(float <[x]>);
+ long int lrintl(long double <[x]>);
+
+DESCRIPTION
+ The <<lrint>> functions round their argument to the nearest integer value,
+ using the current rounding direction.
+
+ Note that unlike <<rint>>, etc., the return type of these functions differs
+ from that of their arguments.
+
+RETURNS
+ These functions return the rounded integer value of <[x]>.
+ If <[x]> is NaN or an infinity, or the rounded value is too large
+ to be stored in a long then a domain error occurs, and the return
+ value is unspecified.
+
+ These functions do not set errno.
+
+PORTABILITY
+ANSI C, POSIX
+
+*/
+
+#include <stdint.h>
+#include <math.h>
+#include <libc/ieee.h>
+
+#if defined (__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && __GNUC_MINOR__ >= 8))
+# define __gnuc_extension__ __extension__
+#else
+# define __gnuc_extension__
+#endif
+
+#define DOUBLE_BIAS (0x3FFU)
+#define BIN_DIGITS_IN_FRACTION (52) /* Amount of binary digits in fraction part of mantissa. */
+#define BIN_DIGITS_IN_MANTISSAH (20) /* Amount of binary digits in msw of the fraction part of mantissa. */
+#define ALL_DIGITS_ARE_SIGNIFICANT(exp) ((exp) > (BIN_DIGITS_IN_FRACTION - 1))
+#define NO_SIGNIFICANT_DIGITS_IN_MANTISSAL(exp) ((exp) < BIN_DIGITS_IN_MANTISSAH)
+#define MAGNITUDE_IS_TOO_LARGE(exp) ((exp) > (int)(sizeof(long int) * 8) - 2)
+#define MAGNITUDE_IS_LESS_THAN_ONE(exp) ((exp) < 0)
+#define MAGNITUDE_IS_LESS_THAN_ONE_HALF(exp) ((exp) < -1)
+#define IS_ZERO(num) ((((num).dt.mantissah & ~(1L << BIN_DIGITS_IN_MANTISSAH)) == 0) && (((num).dt.mantissal & 0xFFFFFFFFUL) == 0) && (((num).dt.exponent & 0x07FFU) == 0))
+
+#define ROUND_MANTISSAH(num, unbiased_exponent) ((long int)(((uint32_t)(num).dt.mantissah | 0x00100000UL) >> (BIN_DIGITS_IN_MANTISSAH - (unbiased_exponent))))
+#define ROUND_MANTISSAH_TO_INTEGER(num, unbiased_exponent) \
+(__gnuc_extension__ \
+ ({ \
+ (num).d = two52[(num).dt.sign] + x; \
+ (num).d -= two52[(num).dt.sign]; \
+ (unbiased_exponent) = (num).dt.exponent - DOUBLE_BIAS; \
+ \
+ result = MAGNITUDE_IS_LESS_THAN_ONE((unbiased_exponent)) || IS_ZERO((num)) ? 0 : ROUND_MANTISSAH((num), (unbiased_exponent)); \
+ (long int)result; \
+ }) \
+)
+
+#define SHIFT_LEFT_MANTISSAH(num, unbiased_exponent) (((uint32_t)(num).dt.mantissah | 0x00100000UL) << ((unbiased_exponent) - BIN_DIGITS_IN_MANTISSAH))
+#define CONVERT_MANTISSA_TO_INTEGER(num, unbiased_exponent) ((long int)(SHIFT_LEFT_MANTISSAH(num, unbiased_exponent) | (num).dt.mantissal << ((unbiased_exponent) - BIN_DIGITS_IN_FRACTION)))
+#define ROUND_MANTISSA(num, unbiased_exponent) ((long int)(SHIFT_LEFT_MANTISSAH(num, unbiased_exponent) | (num).dt.mantissal >> (BIN_DIGITS_IN_FRACTION - (unbiased_exponent))))
+#define ROUND_MANTISSA_TO_INTEGER(num, unbiased_exponent) \
+(__gnuc_extension__ \
+ ({ \
+ (num).d = two52[(num).dt.sign] + x; \
+ (num).d -= two52[(num).dt.sign]; \
+ (unbiased_exponent) = (num).dt.exponent - DOUBLE_BIAS; \
+ \
+ result = ((unbiased_exponent) == BIN_DIGITS_IN_MANTISSAH) ? (long int)(num).dt.mantissah : ROUND_MANTISSA((num), (unbiased_exponent)); \
+ (long int)result; \
+ }) \
+)
+
+
+/* Adding a double, x, to 2^52 will cause the result to be rounded based on
+ the fractional part of x, according to the implementation's current rounding
+ mode. 2^52 is the smallest double that can be represented using all 52 significant
+ digits. */
+#ifdef __STDC__
+static const double
+#else
+static double
+#endif
+two52[2] = {
+ 4503599627370496, /* 0, 0x3FFU + 0x034U, 0x00000U, 0x00000000U */
+ -4503599627370496 /* 1, 0x3FFU + 0x034U, 0x00000U, 0x00000000U */
+};
+
+#ifdef __STDC__
+long int
+lrint(double x)
+#else
+long int
+lrint(x)
+double x;
+#endif
+{
+ _double_union_t ieee_value;
+ int unbiased_exponent;
+ long int result;
+
+
+ ieee_value.d = x;
+ unbiased_exponent = ieee_value.dt.exponent - DOUBLE_BIAS;
+
+ if (MAGNITUDE_IS_TOO_LARGE(unbiased_exponent)) /* The number is too large. */
+ return (long int)x; /* It is left implementation defined what happens. */
+ else if (NO_SIGNIFICANT_DIGITS_IN_MANTISSAL(unbiased_exponent))
+ result = MAGNITUDE_IS_LESS_THAN_ONE_HALF(unbiased_exponent) ? 0 : ROUND_MANTISSAH_TO_INTEGER(ieee_value, unbiased_exponent);
+ else
+ result = ALL_DIGITS_ARE_SIGNIFICANT(unbiased_exponent) ? CONVERT_MANTISSA_TO_INTEGER(ieee_value, unbiased_exponent) /* >= 2^52 is already an exact integer iff long int is 64 bit. But this is not the case with djgpp. */
+ : ROUND_MANTISSA_TO_INTEGER(ieee_value, unbiased_exponent);
+
+ return ieee_value.dt.sign ? -result : result;
+}
diff -aprNU5 djgpp.orig/src/libm/math/lrintf.c djgpp/src/libm/math/lrintf.c
--- djgpp.orig/src/libm/math/lrintf.c 1970-01-01 01:00:00 +0100
+++ djgpp/src/libm/math/lrintf.c 2013-10-20 13:45:16 +0100
@@ -0,0 +1,77 @@
+/* Copyright (C) 2013 DJ Delorie, see COPYING.DJ for details */
+
+#include <stdint.h>
+#include <math.h>
+#include <libc/ieee.h>
+
+#if defined (__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && __GNUC_MINOR__ >= 8))
+# define __gnuc_extension__ __extension__
+#else
+# define __gnuc_extension__
+#endif
+
+#define FLOAT_BIAS (0x7FU)
+#define BIN_DIGITS_IN_FRACTION (23) /* Amount of binary digits in fraction part of mantissa. */
+#define ALL_DIGITS_ARE_SIGNIFICANT(exp) ((exp) > (BIN_DIGITS_IN_FRACTION - 1))
+#define MAGNITUDE_IS_TOO_LARGE(exp) ((exp) > (int)(sizeof(long int) * 8) - 2)
+#define MAGNITUDE_IS_LESS_THAN_ONE(exp) ((exp) < 0)
+#define MAGNITUDE_IS_LESS_THAN_ONE_HALF(exp) ((exp) < -1)
+#define IS_ZERO(num) ((((num).ft.mantissa & ~(1UL << BIN_DIGITS_IN_FRACTION)) == 0) && (((num).ft.exponent & 0xFFU) == 0))
+#define CONVERT_MANTISSA_TO_INTEGER(num, unbiased_exponent) ((long int)((uint32_t)(num).ft.mantissa | 0x00800000UL) << ((unbiased_exponent) - BIN_DIGITS_IN_FRACTION))
+#define ROUND_MANTISSA(num, unbiased_exponent) ((long int)((uint32_t)(num).ft.mantissa | 0x00800000UL) >> (BIN_DIGITS_IN_FRACTION - (unbiased_exponent)))
+#define ROUND_MANTISSA_TO_INTEGER(num, unbiased_exponent) \
+(__gnuc_extension__ \
+ ({ \
+ (num).f = two23[(num).ft.sign] + x; \
+ (num).f -= two23[(num).ft.sign]; \
+ (unbiased_exponent) = (num).ft.exponent - FLOAT_BIAS; \
+ \
+ result = MAGNITUDE_IS_LESS_THAN_ONE((unbiased_exponent)) || IS_ZERO((num)) ? 0 : ROUND_MANTISSA((num), (unbiased_exponent)); \
+ (long int)result; \
+ }) \
+)
+
+
+/* Adding a float, x, to 2^23 will cause the result to be rounded based on
+ the fractional part of x, according to the implementation's current rounding
+ mode. 2^23 is the smallest float that can be represented using all 23 significant
+ digits. */
+#ifdef __STDC__
+static const float
+#else
+static float
+#endif
+two23[2] = {
+ 8388608, /* 0, 0x7FU + 0x17U, 0x000000U */
+ -8388608 /* 1, 0x7FU + 0x17U, 0x000000U */
+};
+
+#ifdef __STDC__
+long int
+lrintf(float x)
+#else
+long int
+lrintf(x)
+float x;
+#endif
+{
+ _float_union_t ieee_value;
+ int unbiased_exponent;
+ long int result;
+
+
+ ieee_value.f = x;
+ unbiased_exponent = ieee_value.ft.exponent - FLOAT_BIAS;
+
+ if (MAGNITUDE_IS_TOO_LARGE(unbiased_exponent)) /* The number is too large. */
+ return (long int)x; /* It is left implementation defined what happens. */
+ else
+ {
+ if (MAGNITUDE_IS_LESS_THAN_ONE_HALF(unbiased_exponent))
+ result = 0;
+ else
+ result = ALL_DIGITS_ARE_SIGNIFICANT(unbiased_exponent) ? CONVERT_MANTISSA_TO_INTEGER(ieee_value, unbiased_exponent) /* >= 2^23 is already an exact integer. */
+ : ROUND_MANTISSA_TO_INTEGER(ieee_value, unbiased_exponent);
+ return ieee_value.ft.sign ? -result : result;
+ }
+}
diff -aprNU5 djgpp.orig/src/libm/math/lrintl.c djgpp/src/libm/math/lrintl.c
--- djgpp.orig/src/libm/math/lrintl.c 1970-01-01 01:00:00 +0100
+++ djgpp/src/libm/math/lrintl.c 2013-10-20 13:45:18 +0100
@@ -0,0 +1,91 @@
+/* Copyright (C) 2013 DJ Delorie, see COPYING.DJ for details */
+
+#include <stdint.h>
+#include <math.h>
+#include <libc/ieee.h>
+
+#if defined (__GNUC__) && (__GNUC__ > 2 || (__GNUC__ == 2 && __GNUC_MINOR__ >= 8))
+# define __gnuc_extension__ __extension__
+#else
+# define __gnuc_extension__
+#endif
+
+#define LONG_DOUBLE_BIAS (0x3FFFU)
+#define BIN_DIGITS_IN_FRACTION (63) /* Amount of binary digits in fraction part of mantissa. */
+#define BIN_DIGITS_IN_MANTISSAH (31) /* Amount of binary digits in msw of the fraction part of mantissa. */
+#define ALL_DIGITS_ARE_SIGNIFICANT(exp) ((exp) > (BIN_DIGITS_IN_FRACTION - 1))
+#define NO_SIGNIFICANT_DIGITS_IN_MANTISSAL(exp) ((exp) < BIN_DIGITS_IN_MANTISSAH)
+#define MAGNITUDE_IS_TOO_LARGE(exp) ((exp) > (int)(sizeof(long int) * 8) - 2)
+#define MAGNITUDE_IS_LESS_THAN_ONE(exp) ((exp) < 0)
+#define MAGNITUDE_IS_LESS_THAN_ONE_HALF(exp) ((exp) < -1)
+#define IS_ZERO(num) ((((num).ldt.mantissah & 0xFFFFFFFFUL) == 0) && (((num).ldt.mantissal & 0xFFFFFFFFUL) == 0) && (((num).ldt.exponent & 0x7FFFU) == 0))
+#define ROUND_MANTISSAH(num, unbiased_exponent) ((long int)((uint32_t)(num).ldt.mantissah >> (BIN_DIGITS_IN_MANTISSAH - (unbiased_exponent))))
+#define ROUND_MANTISSAH_TO_INTEGER(num, unbiased_exponent) \
+(__gnuc_extension__ \
+ ({ \
+ (num).ld = two63[(num).ldt.sign] + x; \
+ (num).ld -= two63[(num).ldt.sign]; \
+ (unbiased_exponent) = (num).ldt.exponent - LONG_DOUBLE_BIAS; \
+ \
+ result = MAGNITUDE_IS_LESS_THAN_ONE((unbiased_exponent)) || IS_ZERO((num)) ? 0 : ROUND_MANTISSAH((num), (unbiased_exponent)); \
+ (long int)result; \
+ }) \
+)
+
+#define SHIFT_LEFT_MANTISSAH(num, unbiased_exponent) ((uint32_t)(num).ldt.mantissah << ((unbiased_exponent) - BIN_DIGITS_IN_MANTISSAH))
+#define CONVERT_MANTISSA_TO_INTEGER(num, unbiased_exponent) ((long int)(SHIFT_LEFT_MANTISSAH(num, unbiased_exponent) | (num).ldt.mantissal << ((unbiased_exponent) - BIN_DIGITS_IN_FRACTION)))
+#define ROUND_MANTISSA(num, unbiased_exponent) ((long int)(SHIFT_LEFT_MANTISSAH(num, unbiased_exponent) | (num).ldt.mantissal >> (BIN_DIGITS_IN_FRACTION - (unbiased_exponent))))
+#define ROUND_MANTISSA_TO_INTEGER(num, unbiased_exponent) \
+(__gnuc_extension__ \
+ ({ \
+ (num).ld = two63[(num).ldt.sign] + x; \
+ (num).ld -= two63[(num).ldt.sign]; \
+ (unbiased_exponent) = (num).ldt.exponent - LONG_DOUBLE_BIAS; \
+ \
+ result = ((unbiased_exponent) == BIN_DIGITS_IN_MANTISSAH) ? (long int)(num).ldt.mantissah : ROUND_MANTISSA((num), (unbiased_exponent)); \
+ (long int)result; \
+ }) \
+)
+
+
+/* Adding a long double, x, to 2^63 will cause the result to be rounded based on
+ the fractional part of x, according to the implementation's current rounding
+ mode. 2^63 is the smallest long double that can be represented using all 63
+ significant digits. */
+#ifdef __STDC__
+static const long double
+#else
+static long double
+#endif
+two63[2] = {
+ 9.223372036854775808E+18, /* 0, 0x3FFFE + 0x003F, 0x80000000U, 0x00000000U */
+ -9.223372036854775808E+18 /* 1, 0x3FFFE + 0x003F, 0x80000000U, 0x00000000U */
+};
+
+#ifdef __STDC__
+long int
+lrintl(long double x)
+#else
+long int
+lrintl(x)
+long double x;
+#endif
+{
+ _longdouble_union_t ieee_value;
+ int unbiased_exponent;
+ long int result;
+
+
+ ieee_value.ld = x;
+ unbiased_exponent = ieee_value.ldt.exponent - LONG_DOUBLE_BIAS;
+
+ if (MAGNITUDE_IS_TOO_LARGE(unbiased_exponent)) /* The number is too large. */
+ return (long int)x; /* It is left implementation defined what happens. */
+ else if (NO_SIGNIFICANT_DIGITS_IN_MANTISSAL(unbiased_exponent))
+ result = MAGNITUDE_IS_LESS_THAN_ONE_HALF(unbiased_exponent) ? 0 : ROUND_MANTISSAH_TO_INTEGER(ieee_value, unbiased_exponent);
+ else
+ result = ALL_DIGITS_ARE_SIGNIFICANT(unbiased_exponent) ? CONVERT_MANTISSA_TO_INTEGER(ieee_value, unbiased_exponent) /* >= 2^63 is already an exact integer iff long int is 64 bit. */
+ : ROUND_MANTISSA_TO_INTEGER(ieee_value, unbiased_exponent);
+
+ return ieee_value.ldt.sign ? -result : result;
+}
diff -aprNU5 djgpp.orig/src/libm/math/makefile djgpp/src/libm/math/makefile
--- djgpp.orig/src/libm/math/makefile 2013-10-14 22:37:24 +0100
+++ djgpp/src/libm/math/makefile 2013-10-14 22:39:40 +0100
@@ -165,21 +165,28 @@ SRC += sf_infinity.c
SRC += sf_isinf.c
SRC += sf_nan.c
SRC += trunc.c
SRC += truncf.c
SRC += truncl.c
+SRC += lrint.c
+SRC += lrintf.c
+SRC += lrintl.c
+SRC += llrint.c
+SRC += llrintf.c
+SRC += llrintl.c
chobj = w_acos.def w_acosh.def w_asin.def s_asinh.def \
s_atan.def w_atan2.def w_atanh.def w_j0.def \
s_copysign.def w_cosh.def s_erf.def w_exp.def \
s_fabs.def s_floor.def w_fmod.def s_frexp.def \
w_gamma.def w_hypot.def s_ldexp.def w_log.def \
w_log10.def s_log1p.def s_matherr.def s_modf.def \
w_pow.def w_remainder.def s_sin.def w_sinh.def \
s_cbrt.def w_sqrt.def s_tan.def s_tanh.def \
s_infinity.def s_isnan.def s_scalbn.def s_nextafter.def \
- s_nan.def s_ilogb.def s_expm1.def trunc.def
+ s_nan.def s_ilogb.def s_expm1.def trunc.def \
+ lrint.def llrint.def
CFLAGS = -D_USE_LIBM_MATH_H
EXTRA_FILES = $(TOP)/../../info/libm.info
# chew emits non-fatal warnings, so we redirect them to the void
CHEW = ./chew.exe -f ./doc.str -e /dev/null
diff -aprNU5 djgpp.orig/src/libm/math/math.texi djgpp/src/libm/math/math.texi
--- djgpp.orig/src/libm/math/math.texi 2013-03-05 20:06:48 +0100
+++ djgpp/src/libm/math/math.texi 2013-10-14 22:39:40 +0100
@@ -54,10 +54,12 @@ available when you include @file{math.h}
* isnan:: Check type of number
* ldexp:: Load exponent
* log:: Natural logarithms
* log10:: Base 10 logarithms
* log1p:: Log of 1 + X
+* lrint:: Round to integer
+* llrint:: Round to integer
* matherr:: Modifiable math error handler
* modf:: Split fractional and integer parts
* nan:: Floating Not a Number
* nextafter:: Get next representable number
* pow:: X to the power Y
@@ -224,5 +226,11 @@ The library is set to X/Open mode by def
@page
@include s_tanh.def
@page
@include trunc.def
+
+@page
+@include lrint.def
+
+@page
+@include llrint.def
diff -aprNU5 djgpp.orig/tests/cygnus/makefile djgpp/tests/cygnus/makefile
--- djgpp.orig/tests/cygnus/makefile 2013-10-14 22:37:24 +0100
+++ djgpp/tests/cygnus/makefile 2013-10-14 22:39:40 +0100
@@ -92,15 +92,20 @@ VEC_OFILES = $(GEN_VEC_FILES:.c=.o)
$(OFILES): CFLAGS = $(DEFS) -fno-builtin -O2 -g -Wall
all: check
-check: mtest.exe t-trunc.exe t-truncf.exe t-truncl.exe
+check: mtest.exe t-trunc.exe t-truncf.exe t-truncl.exe t-lrint.exe t-lrintf.exe t-lrintl.exe t-llrint.exe t-llrintl.exe
./mtest.exe > mtest.results
./t-trunc.exe > ttest.results
./t-truncf.exe >> ttest.results
./t-truncl.exe >> ttest.results
+ ./t-lrintf.exe >> ttest.results
+ ./t-lrint.exe >> ttest.results
+ ./t-lrintl.exe >> ttest.results
+ ./t-llrint.exe >> ttest.results
+ ./t-llrintl.exe >> ttest.results
# Pattern rules to generate test vectors. (The funky vec.c=%.c replacement
# is meant to create a pattern rule where actually a normal rule will
# do, since only pattern rules can tell Make that several targets are
# generated all at once. Without this, Make will invoke the vector-
@@ -135,13 +140,28 @@ t-truncf.exe: t-truncf.o
$(CC) -o $@ $(LDFLAGS) t-truncf.o $(LIBS)
t-truncl.exe: t-truncl.o
$(CC) -o $@ $(LDFLAGS) t-truncl.o $(LIBS)
+t-lrint.exe: t-lrint.o
+ $(CC) -o $@ $(LDFLAGS) t-lrint.o $(LIBS)
+
+t-lrintf.exe: t-lrintf.o
+ $(CC) -o $@ $(LDFLAGS) t-lrintf.o $(LIBS)
+
+t-lrintl.exe: t-lrintl.o
+ $(CC) -o $@ $(LDFLAGS) t-lrintl.o $(LIBS)
+
+t-llrint.exe: t-llrint.o
+ $(CC) -o $@ $(LDFLAGS) t-llrint.o $(LIBS)
+
+t-llrintl.exe: t-llrintl.o
+ $(CC) -o $@ $(LDFLAGS) t-llrintl.o $(LIBS)
+
$(OFILES) $(VEC_OFILES) : test.h
clean mostlyclean:
-cd tgen; $(MAKE) $@
- cd $(HERE); $(RM) $(OFILES) $(VEC_OFILES) *~ *.exe mtest.results ttest.results t-trunc*.o
+ cd $(HERE); $(RM) $(OFILES) $(VEC_OFILES) *~ *.exe mtest.results ttest.results t-trunc*.o t-lrint*.o t-llrint*.o
.SECONDARY: $(GEN_PROGS) $(GEN_VEC_FILES)
.PHONY: all check clean mostlyclean
diff -aprNU5 djgpp.orig/tests/cygnus/t-llrint.c djgpp/tests/cygnus/t-llrint.c
--- djgpp.orig/tests/cygnus/t-llrint.c 1970-01-01 01:00:00 +0100
+++ djgpp/tests/cygnus/t-llrint.c 2013-10-14 22:39:40 +0100
@@ -0,0 +1,107 @@
+/* Copyright (C) 2013 DJ Delorie, see COPYING.DJ for details */
+
+/* Shall give the same results than /djgpp/tests/libc/c99/math/t-llrint.c */
+
+
+#include <stdio.h>
+#include <math.h>
+#include <libc/ieee.h>
+
+typedef struct {
+ const _double_union_t value; /* test value */
+ const long long int should_be; /* result */
+} entry_t;
+
+static const entry_t tests_double[] =
+{
+ /* test value */
+ /* value should be */
+
+ /* Zeros. */
+ {{.dt = {0x0U, 0x0U, 0x0U, 0}}, 0}, /* 0.0 */
+ {{.dt = {0x0U, 0x0U, 0x0U, 1}}, 0}, /* -0.0 */
+
+ /* Subnormals aka denormals. */
+ {{.dt = {0x1U, 0x0U, 0x0U, 0}}, 0}, /* Very small number. */
+ {{.dt = {0x1U, 0x0U, 0x0U, 1}}, 0}, /* Very small -number. */
+
+ /* Normals. */
+ {{.dt = {0x1U, 0x0U, 0x1U, 0}}, 0}, /* Small number. */
+ {{.dt = {0x1U, 0x0U, 0x1U, 1}}, 0}, /* Small -number. */
+ {{.dt = {0xFFFFFFFFU, 0x7FFFFU, 0x7FEU, 0}}, -9.223372036854775808E18}, /* Big number. */
+ {{.dt = {0xFFFFFFFFU, 0x7FFFFU, 0x7FEU, 1}}, -9.223372036854775808E18}, /* Big -number. */
+
+ /* Infs. */
+ {{.dt = {0x0U, 0x0U, 0x7FFU, 0}}, -9.223372036854775808E18}, /* Inf */
+ {{.dt = {0x0U, 0x0U, 0x7FFU, 1}}, -9.223372036854775808E18}, /* -Inf */
+
+ /* NaNs. */
+ {{.dt = {0x1U, 0x0U, 0x7FFU, 0}}, -9.223372036854775808E18}, /* SNaN */
+ {{.dt = {0x1U, 0x0U, 0x7FFU, 1}}, -9.223372036854775808E18}, /* -SNaN */
+ {{.dt = {0x0U, 0xFFFFFU, 0x7FFU, 1}}, -9.223372036854775808E18}, /* QNaN */
+ {{.dt = {0x0U, 0xFFFFFU, 0x7FFU, 0}}, -9.223372036854775808E18}, /* -QNaN */
+
+
+ /* Number. */
+ {{.dt = {0x54442D18U, 0x921FBU, 0x3FFU + 0x001U, 0}}, +3}, /* PI */
+ {{.dt = {0x54442D18U, 0x921FBU, 0x3FFU + 0x001U, 1}}, -3}, /* -PI */
+
+ {{.dt = {0x00000000U, 0xE0000U, 0x3FFU + 0x0U, 0}}, +2}, /* 1.875000 */
+ {{.dt = {0x00000000U, 0xE0000U, 0x3FFU + 0x0U, 1}}, -2}, /* -1.875000 */
+ {{.dt = {0x00000000U, 0xA0000U, 0x3FFU + 0x0U, 0}}, +2}, /* 1.625000 */
+ {{.dt = {0x00000000U, 0xA0000U, 0x3FFU + 0x0U, 1}}, -2}, /* -1.625000 */
+ {{.dt = {0x18DEF417U, 0x80002U, 0x3FFU + 0x0U, 0}}, +2}, /* 1.500002 */
+ {{.dt = {0x18DEF417U, 0x80002U, 0x3FFU + 0x0U, 1}}, -2}, /* -1.500002 */
+ {{.dt = {0x00000000U, 0x80000U, 0x3FFU + 0x0U, 0}}, +2}, /* 1.500000 */
+ {{.dt = {0x00000000U, 0x80000U, 0x3FFU + 0x0U, 1}}, -2}, /* -1.500000 */
+ {{.dt = {0xE7210BE9U, 0x7F9FDU, 0x3FFU + 0x0U, 0}}, +1}, /* 1.499998 */
+ {{.dt = {0xE7210BE9U, 0x7F9FDU, 0x3FFU + 0x0U, 1}}, -1}, /* -1.499998 */
+ {{.dt = {0x00000000U, 0x60000U, 0x3FFU + 0x0U, 0}}, +1}, /* 1.375000 */
+ {{.dt = {0x00000000U, 0x60000U, 0x3FFU + 0x0U, 1}}, -1}, /* -1.375000 */
+ {{.dt = {0x00000000U, 0x20000U, 0x3FFU + 0x0U, 0}}, +1}, /* 1.125000 */
+ {{.dt = {0x00000000U, 0x20000U, 0x3FFU + 0x0U, 1}}, -1}, /* -1.125000 */
+
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x016U, 0}}, +4194304}, /* 4194304.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x016U, 1}}, -4194304}, /* -4194304.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x017U, 0}}, +8388608}, /* 8388608.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x017U, 1}}, -8388608}, /* -8388608.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x018U, 0}}, +16777216}, /* 16777216.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x018U, 1}}, -16777216}, /* -16777216.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x01EU, 0}}, +1073741824}, /* 1073741824.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x01EU, 1}}, -1073741824}, /* -1073741824.000000 */
+ {{.dt = {0xFFC00000U, 0xFFFFFU, 0x3FFU + 0x01EU, 0}}, +2147483647LL}, /* 2147483647.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x01FU, 1}}, -2147483648LL}, /* -2147483648.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x020U, 0}}, +4294967296}, /* 4294967296.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x020U, 1}}, -4294967296}, /* -4294967296.000000 */
+ {{.dt = {0xACF13400U, 0x02468U, 0x3FFU + 0x033U, 0}}, 2271815812028928}, /* 2271815812028928.000000 */
+ {{.dt = {0xACF13400U, 0x02468U, 0x3FFU + 0x033U, 1}}, -2271815812028928}, /* -2271815812028928.000000 */
+ {{.dt = {0x56789AB0U, 0x01234U, 0x3FFU + 0x034U, 0}}, 4523615625714352}, /* 4523615625714352.000000 */
+ {{.dt = {0x56789AB0U, 0x01234U, 0x3FFU + 0x034U, 1}}, -4523615625714352}, /* -4523615625714352.000000 */
+ {{.dt = {0xA9876543U, 0xFEDCBU, 0x3FFU + 0x034U, 0}}, 8987183256397123}, /* 8987183256397123.000000 */
+ {{.dt = {0xA9876543U, 0xFEDCBU, 0x3FFU + 0x034U, 1}}, -8987183256397123}, /* -8987183256397123.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x035U, 0}}, 9007199254740992}, /* 9007199254740992.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x035U, 1}}, -9007199254740992}, /* -9007199254740992.000000 */
+ {{.dt = {0x6789ABCEU, 0x12345U, 0x3FFU + 0x035U, 0}}, 9647711201744796}, /* 9647711201744796.000000 */
+ {{.dt = {0x6789ABCEU, 0x12345U, 0x3FFU + 0x035U, 1}}, -9647711201744796} /* -9647711201744796.000000 */
+};
+
+static const size_t n_tests_double = sizeof(tests_double) / sizeof(tests_double[0]);
+
+
+int main(void)
+{
+ unsigned int i, counter;
+
+ for (counter = i = 0; i < n_tests_double; i++)
+ {
+ long long int result = llrint(tests_double[i].value.d);
+
+ if (tests_double[i].should_be == result)
+ counter++;
+ else
+ printf("llrint test failed: value to round = %.6g result = %lld should be = %lld\n", tests_double[i].value.d, result, tests_double[i].should_be);
+ }
+ printf("%s\n", (counter < n_tests_double) ? "llrint test failed." : "llrint test succeded.");
+
+ return 0;
+}
diff -aprNU5 djgpp.orig/tests/cygnus/t-llrintl.c djgpp/tests/cygnus/t-llrintl.c
--- djgpp.orig/tests/cygnus/t-llrintl.c 1970-01-01 01:00:00 +0100
+++ djgpp/tests/cygnus/t-llrintl.c 2013-10-14 22:39:42 +0100
@@ -0,0 +1,128 @@
+/* Copyright (C) 2013 DJ Delorie, see COPYING.DJ for details */
+
+/* Shall give the same results than /djgpp/tests/libc/c99/math/t-llrintl.c */
+
+
+#include <stdio.h>
+#include <math.h>
+#include <libc/ieee.h>
+
+typedef struct {
+ const _longdouble_union_t value; /* test value */
+ const long long int should_be; /* result */
+} entry_t;
+
+static const entry_t tests_long_double[] =
+{
+ /* test value */
+ /* value should be */
+
+ /* Zeros. */
+ {{.ldt = {0x0U, 0x0U, 0x0U, 0}}, 0}, /* 0.0 */
+ {{.ldt = {0x0U, 0x0U, 0x0U, 1}}, 0}, /* -0.0 */
+
+ /* Subnormals aka denormals. */
+ {{.ldt = {0x1U, 0x0U, 0x0U, 0}}, 0}, /* Very small number. */
+ {{.ldt = {0x1U, 0x0U, 0x0U, 1}}, 0}, /* Very small -number. */
+
+ /* Normals. */
+ {{.ldt = {0x0U, 0x80000000U, 0x1U, 0}}, 0}, /* Small number. */
+ {{.ldt = {0x0U, 0x80000000U, 0x1U, 1}}, 0}, /* Small -number. */
+ {{.ldt = {0xFFFFFFFFU, 0xFFFFFFFFU, 0x7FFEU, 0}}, -9.223372036854775808E18}, /* Big number. */
+ {{.ldt = {0xFFFFFFFFU, 0xFFFFFFFFU, 0x7FFEU, 1}}, -9.223372036854775808E18}, /* Big -number. */
+
+ /* Infs. */
+ {{.ldt = {0x0U, 0x80000000U, 0x7FFFU, 0}}, -9.223372036854775808E18}, /* Inf */
+ {{.ldt = {0x0U, 0x80000000U, 0x7FFFU, 1}}, -9.223372036854775808E18}, /* -Inf */
+
+ /* NaNs. */
+ {{.ldt = {0x1U, 0x80000000U, 0x7FFFU, 0}}, -9.223372036854775808E18}, /* SNaN */
+ {{.ldt = {0x1U, 0x80000000U, 0x7FFFU, 1}}, -9.223372036854775808E18}, /* -SNaN */
+ {{.ldt = {0x0U, 0xFFFFFFFFU, 0x7FFFU, 0}}, -9.223372036854775808E18}, /* QNaN */
+ {{.ldt = {0x0U, 0xFFFFFFFFU, 0x7FFFU, 1}}, -9.223372036854775808E18}, /* -QNaN */
+
+ /* Number. */
+ {{.ldt = {0x2168C000U, 0xC90FDAA2U, 0x3FFFU + 0x0001U, 0}}, +3}, /* PI */
+ {{.ldt = {0x2168C000U, 0xC90FDAA2U, 0x3FFFU + 0x0001U, 1}}, -3}, /* -PI */
+
+
+ {{.ldt = {0x00000000U, 0xF0000000U, 0x3FFFU + 0x0U, 0}}, +2}, /* 1.875000 */
+ {{.ldt = {0x00000000U, 0xF0000000U, 0x3FFFU + 0x0U, 1}}, -2}, /* -1.875000 */
+ {{.ldt = {0x00000000U, 0xD0000000U, 0x3FFFU + 0x0U, 0}}, +2}, /* 1.625000 */
+ {{.ldt = {0x00000000U, 0xD0000000U, 0x3FFFU + 0x0U, 1}}, -2}, /* -1.625000 */
+ {{.ldt = {0xF7A0B800U, 0xC00010C6U, 0x3FFFU + 0x0U, 0}}, +2}, /* 1.500002 */
+ {{.ldt = {0xF7A0B800U, 0xC00010C6U, 0x3FFFU + 0x0U, 1}}, -2}, /* -1.500002 */
+ {{.ldt = {0x00000000U, 0xC0000000U, 0x3FFFU + 0x0U, 0}}, +2}, /* 1.500000 */
+ {{.ldt = {0x00000000U, 0xC0000000U, 0x3FFFU + 0x0U, 1}}, -2}, /* -1.500000 */
+ {{.ldt = {0x085F4800U, 0xBFFFEF39U, 0x3FFFU + 0x0U, 0}}, +1}, /* 1.499998 */
+ {{.ldt = {0x085F4800U, 0xBFFFEF39U, 0x3FFFU + 0x0U, 1}}, -1}, /* -1.499998 */
+ {{.ldt = {0x00000000U, 0xB0000000U, 0x3FFFU + 0x0U, 0}}, +1}, /* 1.375000 */
+ {{.ldt = {0x00000000U, 0xB0000000U, 0x3FFFU + 0x0U, 1}}, -1}, /* -1.375000 */
+ {{.ldt = {0x00000000U, 0x90000000U, 0x3FFFU + 0x0U, 0}}, +1}, /* 1.125000 */
+ {{.ldt = {0x00000000U, 0x90000000U, 0x3FFFU + 0x0U, 1}}, -1}, /* -1.125000 */
+
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0016U, 0}}, +4194304}, /* 4194304.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0016U, 1}}, -4194304}, /* -4194304.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0017U, 0}}, +8388608}, /* 8388608.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0017U, 1}}, -8388608}, /* -8388608.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0018U, 0}}, +16777216}, /* 16777216.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0018U, 1}}, -16777216}, /* -16777216.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x001EU, 0}}, +1073741824}, /* 1073741824.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x001EU, 1}}, -1073741824}, /* -1073741824.000000 */
+ {{.ldt = {0x00000000U, 0xFFFFFFFEU, 0x3FFFU + 0x001EU, 0}}, +2147483647LL}, /* 2147483647.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x001FU, 1}}, -2147483648LL}, /* -2147483648.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0020U, 0}}, +4294967296}, /* 4294967296.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0020U, 1}}, -4294967296}, /* -4294967296.000000 */
+
+ {{.ldt = {0x89A00000U, 0x81234567U, 0x3FFFU + 0x0033U, 0}}, 2271815812028928}, /* 2271815812028928.000000 */
+ {{.ldt = {0x89A00000U, 0x81234567U, 0x3FFFU + 0x0033U, 1}}, -2271815812028928}, /* -2271815812028928.000000 */
+ {{.ldt = {0xC4D58000U, 0x8091A2B3U, 0x3FFFU + 0x0034U, 0}}, 4523615625714352}, /* 4523615625714352.000000 */
+ {{.ldt = {0xC4D58000U, 0x8091A2B3U, 0x3FFFU + 0x0034U, 1}}, -4523615625714352}, /* -4523615625714352.000000 */
+ {{.ldt = {0x3B2A1800U, 0xFF6E5D4CU, 0x3FFFU + 0x0034U, 0}}, 8987183256397123}, /* 8987183256397123.000000 */
+ {{.ldt = {0x3B2A1800U, 0xFF6E5D4CU, 0x3FFFU + 0x0034U, 1}}, -8987183256397123}, /* -8987183256397123.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0035U, 0}}, 9007199254740992}, /* 9007199254740992.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0035U, 1}}, -9007199254740992}, /* -9007199254740992.000000 */
+ {{.ldt = {0x4D5E7000U, 0x891A2B3CU, 0x3FFFU + 0x0035U, 0}}, 9647711201744796}, /* 9647711201744796.000000 */
+ {{.ldt = {0x4D5E7000U, 0x891A2B3CU, 0x3FFFU + 0x0035U, 1}}, -9647711201744796}, /* -9647711201744796.000000 */
+ {{.ldt = {0x76543000U, 0xFEDCBA98U, 0x3FFFU + 0x0041U, 0}}, -9.223372036854775808E18}, /* 73459034177972256768.000000 */
+ {{.ldt = {0x76543000U, 0xFEDCBA98U, 0x3FFFU + 0x0041U, 1}}, -9.223372036854775808E18}, /* -73459034177972256768.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x003FU, 0}}, -9.223372036854775808E18}, /* 9223372036854775808.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x003FU, 1}}, -9.223372036854775808E18}, /* -9223372036854775808.000000 */
+ {{.ldt = {0x00000000U, 0xC0000000U, 0x3FFFU + 0x003FU, 0}}, -9.223372036854775808E18}, /* 13835058055282163712.000000 */
+ {{.ldt = {0x00000000U, 0xC0000000U, 0x3FFFU + 0x003FU, 1}}, -9.223372036854775808E18}, /* -13835058055282163712.000000 */
+ {{.ldt = {0x00000000U, 0xF0000000U, 0x3FFFU + 0x0042U, 0}}, -9.223372036854775808E18}, /* 138350580552821637120.000000 */
+ {{.ldt = {0x00000000U, 0xF0000000U, 0x3FFFU + 0x0042U, 1}}, -9.223372036854775808E18}, /* -138350580552821637120.000000 */
+ {{.ldt = {0xBA987800U, 0xF7FFFEDCU, 0x3FFFU + 0x0042U, 0}}, -9.223372036854775808E18}, /* 142962256563249856512.000000 */
+ {{.ldt = {0xBA987800U, 0xF7FFFEDCU, 0x3FFFU + 0x0042U, 1}}, -9.223372036854775808E18}, /* -142962256563249856512.000000 */
+ {{.ldt = {0x00000000U, 0xF8000000U, 0x3FFFU + 0x0042U, 0}}, -9.223372036854775808E18}, /* 142962266571249025024.000000 */
+ {{.ldt = {0x00000000U, 0xF8000000U, 0x3FFFU + 0x0042U, 1}}, -9.223372036854775808E18}, /* -142962266571249025024.000000 */
+ {{.ldt = {0x00012000U, 0xF8000000U, 0x3FFFU + 0x0042U, 0}}, -9.223372036854775808E18}, /* 142962266571249614848.000000 */
+ {{.ldt = {0x00012000U, 0xF8000000U, 0x3FFFU + 0x0042U, 1}}, -9.223372036854775808E18}, /* -142962266571249614848.000000 */
+ {{.ldt = {0x76543000U, 0xFEDCBA98U, 0x3FFFU + 0x0042U, 0}}, -9.223372036854775808E18}, /* 146918068355944513536.000000 */
+ {{.ldt = {0x76543000U, 0xFEDCBA98U, 0x3FFFU + 0x0042U, 1}}, -9.223372036854775808E18}, /* 147573952589676396544.000000 */
+ {{.ldt = {0xFFFFF800U, 0xFFFFFFFFU, 0x3FFFU + 0x0042U, 0}}, -9.223372036854775808E18}, /* -147573952589676396544.000000 */
+ {{.ldt = {0xFFFFF800U, 0xFFFFFFFFU, 0x3FFFU + 0x0042U, 1}}, -9.223372036854775808E18}, /* -147573952589676396544.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0040U, 0}}, -9.223372036854775808E18}, /* 18446744073709551616.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0040U, 1}}, -9.223372036854775808E18} /* -18446744073709551616.000000 */
+};
+
+static const size_t n_tests_long_double = sizeof(tests_long_double) / sizeof(tests_long_double[0]);
+
+
+int main(void)
+{
+ unsigned int i, counter;
+
+ for (counter = i = 0; i < n_tests_long_double; i++)
+ {
+ long long int result = llrintl(tests_long_double[i].value.ld);
+
+ if (tests_long_double[i].should_be == result)
+ counter++;
+ else
+ printf("llrintl test failed: value to round = %.6Lg result = %lld should be = %lld\n", tests_long_double[i].value.ld, result, tests_long_double[i].should_be);
+ }
+ printf("%s\n", (counter < n_tests_long_double) ? "llrintl test failed." : "llrintl test succeded.");
+
+ return 0;
+}
diff -aprNU5 djgpp.orig/tests/cygnus/t-lrint.c djgpp/tests/cygnus/t-lrint.c
--- djgpp.orig/tests/cygnus/t-lrint.c 1970-01-01 01:00:00 +0100
+++ djgpp/tests/cygnus/t-lrint.c 2013-10-14 22:39:42 +0100
@@ -0,0 +1,97 @@
+/* Copyright (C) 2013 DJ Delorie, see COPYING.DJ for details */
+
+/* Shall give the same results than /djgpp/tests/libc/c99/math/t-lrint.c */
+
+
+#include <stdio.h>
+#include <math.h>
+#include <libc/ieee.h>
+
+typedef struct {
+ const _double_union_t value; /* test value */
+ const long int should_be; /* result */
+} entry_t;
+
+static const entry_t tests_double[] =
+{
+ /* test value */
+ /* value should be */
+
+ /* Zeros. */
+ {{.dt = {0x0U, 0x0U, 0x0U, 0}}, 0}, /* 0.0 */
+ {{.dt = {0x0U, 0x0U, 0x0U, 1}}, 0}, /* -0.0 */
+
+ /* Subnormals aka denormals. */
+ {{.dt = {0x1U, 0x0U, 0x0U, 0}}, 0}, /* Very small number. */
+ {{.dt = {0x1U, 0x0U, 0x0U, 1}}, 0}, /* Very small -number. */
+
+ /* Normals. */
+ {{.dt = {0x1U, 0x0U, 0x1U, 0}}, 0}, /* Small number. */
+ {{.dt = {0x1U, 0x0U, 0x1U, 1}}, 0}, /* Small -number. */
+ {{.dt = {0xFFFFFFFFU, 0x7FFFFU, 0x7FEU, 0}}, -2147483648UL}, /* Big number. */
+ {{.dt = {0xFFFFFFFFU, 0x7FFFFU, 0x7FEU, 1}}, -2147483648UL}, /* Big -number. */
+
+ /* Infs. */
+ {{.dt = {0x0U, 0x0U, 0x7FFU, 0}}, -2147483648UL}, /* Inf */
+ {{.dt = {0x0U, 0x0U, 0x7FFU, 1}}, -2147483648UL}, /* -Inf */
+
+ /* NaNs. */
+ {{.dt = {0x1U, 0x0U, 0x7FFU, 0}}, -2147483648UL}, /* SNaN */
+ {{.dt = {0x1U, 0x0U, 0x7FFU, 1}}, -2147483648UL}, /* -SNaN */
+ {{.dt = {0x0U, 0xFFFFFU, 0x7FFU, 1}}, -2147483648UL}, /* QNaN */
+ {{.dt = {0x0U, 0xFFFFFU, 0x7FFU, 0}}, -2147483648UL}, /* -QNaN */
+
+
+ /* Number. */
+ {{.dt = {0x54442D18U, 0x921FBU, 0x3FFU + 0x001U, 0}}, +3}, /* PI */
+ {{.dt = {0x54442D18U, 0x921FBU, 0x3FFU + 0x001U, 1}}, -3}, /* -PI */
+
+ {{.dt = {0x00000000U, 0xE0000U, 0x3FFU + 0x0U, 0}}, +2}, /* 1.875000 */
+ {{.dt = {0x00000000U, 0xE0000U, 0x3FFU + 0x0U, 1}}, -2}, /* -1.875000 */
+ {{.dt = {0x00000000U, 0xA0000U, 0x3FFU + 0x0U, 0}}, +2}, /* 1.625000 */
+ {{.dt = {0x00000000U, 0xA0000U, 0x3FFU + 0x0U, 1}}, -2}, /* -1.625000 */
+ {{.dt = {0x18DEF417U, 0x80002U, 0x3FFU + 0x0U, 0}}, +2}, /* 1.500002 */
+ {{.dt = {0x18DEF417U, 0x80002U, 0x3FFU + 0x0U, 1}}, -2}, /* -1.500002 */
+ {{.dt = {0x00000000U, 0x80000U, 0x3FFU + 0x0U, 0}}, +2}, /* 1.500000 */
+ {{.dt = {0x00000000U, 0x80000U, 0x3FFU + 0x0U, 1}}, -2}, /* -1.500000 */
+ {{.dt = {0xE7210BE9U, 0x7F9FDU, 0x3FFU + 0x0U, 0}}, +1}, /* 1.499998 */
+ {{.dt = {0xE7210BE9U, 0x7F9FDU, 0x3FFU + 0x0U, 1}}, -1}, /* -1.499998 */
+ {{.dt = {0x00000000U, 0x60000U, 0x3FFU + 0x0U, 0}}, +1}, /* 1.375000 */
+ {{.dt = {0x00000000U, 0x60000U, 0x3FFU + 0x0U, 1}}, -1}, /* -1.375000 */
+ {{.dt = {0x00000000U, 0x20000U, 0x3FFU + 0x0U, 0}}, +1}, /* 1.125000 */
+ {{.dt = {0x00000000U, 0x20000U, 0x3FFU + 0x0U, 1}}, -1}, /* -1.125000 */
+
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x016U, 0}}, +4194304}, /* 4194304.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x016U, 1}}, -4194304}, /* -4194304.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x017U, 0}}, +8388608}, /* 8388608.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x017U, 1}}, -8388608}, /* -8388608.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x018U, 0}}, +16777216}, /* 16777216.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x018U, 1}}, -16777216}, /* -16777216.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x01EU, 0}}, +1073741824}, /* 1073741824.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x01EU, 1}}, -1073741824}, /* -1073741824.000000 */
+ {{.dt = {0xFFC00000U, 0xFFFFFU, 0x3FFU + 0x01EU, 0}}, +2147483647LL}, /* 2147483647.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x01FU, 1}}, -2147483648UL}, /* -2147483648.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x020U, 0}}, -2147483648UL}, /* 4294967296.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x020U, 1}}, -2147483648UL} /* -4294967296.000000 */
+};
+
+static const size_t n_tests_double = sizeof(tests_double) / sizeof(tests_double[0]);
+
+
+int main(void)
+{
+ unsigned int i, counter;
+
+ for (counter = i = 0; i < n_tests_double; i++)
+ {
+ long int result = lrint(tests_double[i].value.d);
+
+ if (tests_double[i].should_be == result)
+ counter++;
+ else
+ printf("lrint test failed: value to round = %.6g result = %ld should be = %ld\n", tests_double[i].value.d, result, tests_double[i].should_be);
+ }
+ printf("%s\n", (counter < n_tests_double) ? "lrint test failed." : "lrint test succeded.");
+
+ return 0;
+}
diff -aprNU5 djgpp.orig/tests/cygnus/t-lrintf.c djgpp/tests/cygnus/t-lrintf.c
--- djgpp.orig/tests/cygnus/t-lrintf.c 1970-01-01 01:00:00 +0100
+++ djgpp/tests/cygnus/t-lrintf.c 2013-10-14 22:39:42 +0100
@@ -0,0 +1,139 @@
+/* Copyright (C) 2013 DJ Delorie, see COPYING.DJ for details */
+
+/* Shall give the same results than /djgpp/tests/libc/c99/math/t-lrintf.c */
+
+
+#include <stdio.h>
+#include <math.h>
+#include <libc/ieee.h>
+
+typedef struct {
+ const _float_union_t value; /* test value */
+ const long int should_be; /* result */
+} entry_t;
+
+static const entry_t tests_float[] =
+{
+ /* test value */
+ /* value should be */
+
+ /* Zeros. */
+ {{.ft = {0x0U, 0x0U, 0}}, 0}, /* 0.0 */
+ {{.ft = {0x0U, 0x0U, 1}}, 0}, /* -0.0 */
+
+ /* Subnormals aka denormals. */
+ {{.ft = {0x1U, 0x0U, 0}}, 0}, /* Very small number. */
+ {{.ft = {0x1U, 0x0U, 1}}, 0}, /* Very small -number. */
+
+ /* Normals. */
+ {{.ft = {0x1U, 0x1U, 0}}, 0}, /* Small number. */
+ {{.ft = {0x1U, 0x1U, 1}}, 0}, /* Small -number. */
+ {{.ft = {0xFFFFU, 0xFEU, 0}}, -2.147483648E9}, /* Big number. */
+ {{.ft = {0xFFFFU, 0xFEU, 1}}, -2.147483648E9}, /* Big -number. */
+
+ /* Infs. */
+ {{.ft = {0x0U, 0xFFU, 0}}, -2.147483648E9}, /* Inf */
+ {{.ft = {0x0U, 0xFFU, 1}}, -2.147483648E9}, /* -Inf */
+
+ /* NaNs. */
+ {{.ft = {0x1U, 0xFFU, 0}}, -2.147483648E9}, /* SNaN */
+ {{.ft = {0x1U, 0xFFU, 1}}, -2.147483648E9}, /* -SNaN */
+ {{.ft = {0x7FFFFFU, 0xFFU, 0}}, -2.147483648E9}, /* QNaN */
+ {{.ft = {0x7FFFFFU, 0xFFU, 1}}, -2.147483648E9}, /* -QNaN */
+
+ /* Numbers. */
+ {{.ft = {0x490FDBU, 0x80U, 0}}, +3}, /* PI */
+ {{.ft = {0x490FDBU, 0x80U, 1}}, -3}, /* -PI */
+
+ {{.ft = {0x700000U, 0x7FU, 0}}, +2}, /* 1.875000 */
+ {{.ft = {0x700000U, 0x7FU, 1}}, -2}, /* -1.875000 */
+ {{.ft = {0x500000U, 0x7FU, 0}}, +2}, /* 1.625000 */
+ {{.ft = {0x500000U, 0x7FU, 1}}, -2}, /* -1.625000 */
+ {{.ft = {0x40000FU, 0x7FU, 0}}, +2}, /* 1.500002 */
+ {{.ft = {0x40000FU, 0x7FU, 1}}, -2}, /* -1.500002 */
+ {{.ft = {0x400000U, 0x7FU, 0}}, +2}, /* 1.500000 */
+ {{.ft = {0x400000U, 0x7FU, 1}}, -2}, /* -1.500000 */
+ {{.ft = {0x3FFFF0U, 0x7FU, 0}}, +1}, /* 1.499998 */
+ {{.ft = {0x3FFFF0U, 0x7FU, 1}}, -1}, /* -1.499998 */
+ {{.ft = {0x300000U, 0x7FU, 0}}, +1}, /* 1.375000 */
+ {{.ft = {0x300000U, 0x7FU, 1}}, -1}, /* -1.375000 */
+ {{.ft = {0x100000U, 0x7FU, 0}}, +1}, /* 1.125000 */
+ {{.ft = {0x100000U, 0x7FU, 1}}, -1}, /* -1.125000 */
+
+ {{.ft = {0x000000U, 0x7FU + 0x16U, 0}}, +4194304}, /* 4194304.000000 */
+ {{.ft = {0x000000U, 0x7FU + 0x16U, 1}}, -4194304}, /* -4194304.000000 */
+ {{.ft = {0x000000U, 0x7FU + 0x17U, 0}}, +8388608}, /* 8388608.000000 */
+ {{.ft = {0x000000U, 0x7FU + 0x17U, 1}}, -8388608}, /* -8388608.000000 */
+ {{.ft = {0x000000U, 0x7FU + 0x18U, 0}}, +16777216}, /* 16777216.000000 */
+ {{.ft = {0x000000U, 0x7FU + 0x18U, 1}}, -16777216}, /* -16777216.000000 */
+
+ {{.ft = {0x000000U, 0x7FU + 0x1EU, 0}}, +1073741824}, /* 1073741824.000000 */
+ {{.ft = {0x000000U, 0x7FU + 0x1EU, 1}}, -1073741824}, /* -1073741824.000000 */
+// {{.ft = {0x000000U, 0x7FU + 0x1FU, 0}}, +2.147483648E9}, /* 2147483648.000000 */
+ {{.ft = {0x000000U, 0x7FU + 0x1FU, 1}}, -2.147483648E9}, /* -2147483648.000000 */
+ {{.ft = {0x000000U, 0x7FU + 0x20U, 0}}, -2.147483648E9}, /* 4294967296.000000 */
+ {{.ft = {0x000000U, 0x7FU + 0x20U, 1}}, -2.147483648E9}, /* -4294967296.000000 */
+
+ /* Different mantissa patterns. */
+ {{.ft = {0x7FFFFFU, 0x96U, 0}}, +16777215}, /* 16777215.000000 */
+ {{.ft = {0x7FF000U, 0x95U, 0}}, +8386560}, /* 8386560.000000 */
+ {{.ft = {0x1555FFU, 0x8DU, 0}}, +19115}, /* 19115.000000 */
+ {{.ft = {0x7FF000U, 0x96U, 1}}, -16773120}, /* -16773120.000000 */
+ {{.ft = {0x7FFFFEU, 0x95U, 1}}, -8388607}, /* -8388607.000000 */
+ {{.ft = {0x1555FFU, 0x8DU, 1}}, -19115}, /* -19115.000000 */
+
+ /* Number greater than 2**32 thus all digits are significant and will not be truncated. */
+ {{.ft = {0x000000U, 0x7FU + 0x1FU, 0}}, +2147483648LL}, /* 2147483648.000000 */
+ {{.ft = {0x000000U, 0x7FU + 0x1FU, 1}}, -2147483648LL}, /* -2147483648.000000 */
+
+ /* Number less than 0.5 will be truncated to 0. */
+ {{.ft = {0x000000U, 0x7FU + 0xFFFFFFFFU, 0}}, 0}, /* 0.500000 */
+ {{.ft = {0x000000U, 0x7FU + 0xFFFFFFFFU, 1}}, -0}, /* -0.500000 */
+ {{.ft = {0x7FBC99U, 0x7FU + 0xFFFFFFFEU, 0}}, 0}, /* 0.4994857609 */
+ {{.ft = {0x7FBC99U, 0x7FU + 0xFFFFFFFEU, 1}}, -0}, /* -0.4994857609 */
+ {{.ft = {0x03126FU, 0x7FU + 0xFFFFFFF6U, 0}}, 0}, /* 0.001000 */
+ {{.ft = {0x03126FU, 0x7FU + 0xFFFFFFF6U, 1}}, -0}, /* -0.001000 */
+
+ /* Number greater than 0.5 and less than 1 will be rounded to 1. */
+ {{.ft = {0x7CD6EAU, 0x7FU + 0xFFFFFFFFU, 0}}, 1}, /* 0.987654 */
+ {{.ft = {0x7CD6EAU, 0x7FU + 0xFFFFFFFFU, 1}}, -1}, /* -0.987654 */
+ {{.ft = {0x000001U, 0x7FU + 0xFFFFFFFFU, 0}}, 1}, /* 0.50000006 */
+ {{.ft = {0x000001U, 0x7FU + 0xFFFFFFFFU, 1}}, -1}, /* -0.50000006 */
+
+ /* Number greather than 1 and less than 2**23 will be rounded accordingly. */
+ {{.ft = {0x000000U, 0x7FU + 0x00U, 0}}, 1}, /* 1.0000000000 */
+ {{.ft = {0x000000U, 0x7FU + 0x00U, 1}}, -1}, /* 1.0000000000 */
+ {{.ft = {0x00000FU, 0x7FU + 0x00U, 0}}, 1}, /* 1.000002 */
+ {{.ft = {0x00000FU, 0x7FU + 0x00U, 1}}, -1}, /* 1.000002 */
+ {{.ft = {0x000018U, 0x7FU + 0x10U, 0}}, 65536}, /* 65536.1875000000 */
+ {{.ft = {0x000018U, 0x7FU + 0x10U, 1}}, -65536}, /* -65536.1875000000 */
+ {{.ft = {0x000040U, 0x7FU + 0x10U, 0}}, 65536}, /* 65536.5000000 */
+ {{.ft = {0x000040U, 0x7FU + 0x10U, 1}}, -65536}, /* -65536.5000000 */
+ {{.ft = {0x00004DU, 0x7FU + 0x10U, 0}}, 65537}, /* 65536.6015625000 */
+ {{.ft = {0x00004DU, 0x7FU + 0x10U, 1}}, -65537}, /* -65536.6015625000 */
+ {{.ft = {0x7FFFFFU, 0x7FU + 0x16U, 0}}, 8388608}, /* 8388607.5000000000 */
+ {{.ft = {0x7FFFFFU, 0x7FU + 0x16U, 1}}, -8388608}, /* -8388607.5000000000 */
+ {{.ft = {0x000005U, 0x7FU + 0x14U, 0}}, 1048577}, /* 1048576.6250000000 */
+ {{.ft = {0x000005U, 0x7FU + 0x14U, 1}}, -1048577}, /* -1048576.6250000000 */
+};
+
+static const size_t n_tests_float = sizeof(tests_float) / sizeof(tests_float[0]);
+
+
+int main(void)
+{
+ unsigned int i, counter;
+
+ for (counter = i = 0; i < n_tests_float; i++)
+ {
+ long int result = lrintf(tests_float[i].value.f);
+
+ if (tests_float[i].should_be == result)
+ counter++;
+ else
+ printf("lrintf test failed: value to round = %.6f result = %ld should be = %ld\n", tests_float[i].value.f, result, tests_float[i].should_be);
+ }
+ printf("%s\n", (counter < n_tests_float) ? "lrintf test failed." : "lrintf test succeded.");
+
+ return 0;
+}
diff -aprNU5 djgpp.orig/tests/cygnus/t-lrintl.c djgpp/tests/cygnus/t-lrintl.c
--- djgpp.orig/tests/cygnus/t-lrintl.c 1970-01-01 01:00:00 +0100
+++ djgpp/tests/cygnus/t-lrintl.c 2013-10-14 22:39:42 +0100
@@ -0,0 +1,99 @@
+/* Copyright (C) 2013 DJ Delorie, see COPYING.DJ for details */
+
+/* Shall give the same results than /djgpp/tests/libc/c99/math/t-lrintl.c */
+
+
+#include <stdio.h>
+#include <math.h>
+#include <libc/ieee.h>
+
+typedef struct {
+ const _longdouble_union_t value; /* test value */
+ const long int should_be; /* result */
+} entry_t;
+
+static const entry_t tests_long_double[] =
+{
+ /* test value */
+ /* value should be */
+
+ /* Zeros. */
+ {{.ldt = {0x0U, 0x0U, 0x0U, 0}}, 0}, /* 0.0 */
+ {{.ldt = {0x0U, 0x0U, 0x0U, 1}}, 0}, /* -0.0 */
+
+
+ /* Subnormals aka denormals. */
+ {{.ldt = {0x1U, 0x0U, 0x0U, 0}}, 0}, /* Very small number. */
+ {{.ldt = {0x1U, 0x0U, 0x0U, 1}}, 0}, /* Very small -number. */
+
+ /* Normals. */
+ {{.ldt = {0x0U, 0x80000000U, 0x1U, 0}}, 0}, /* Small number. */
+ {{.ldt = {0x0U, 0x80000000U, 0x1U, 1}}, 0}, /* Small -number. */
+ {{.ldt = {0xFFFFFFFFU, 0xFFFFFFFFU, 0x7FFEU, 0}}, -2147483648UL}, /* Big number. */
+ {{.ldt = {0xFFFFFFFFU, 0xFFFFFFFFU, 0x7FFEU, 1}}, -2147483648UL}, /* Big -number. */
+
+ /* Infs. */
+ {{.ldt = {0x0U, 0x80000000U, 0x7FFFU, 0}}, -2147483648UL}, /* Inf */
+ {{.ldt = {0x0U, 0x80000000U, 0x7FFFU, 1}}, -2147483648UL}, /* -Inf */
+
+ /* NaNs. */
+ {{.ldt = {0x1U, 0x80000000U, 0x7FFFU, 0}}, -2147483648UL}, /* SNaN */
+ {{.ldt = {0x1U, 0x80000000U, 0x7FFFU, 1}}, -2147483648UL}, /* -SNaN */
+ {{.ldt = {0x0U, 0xFFFFFFFFU, 0x7FFFU, 0}}, -2147483648UL}, /* QNaN */
+ {{.ldt = {0x0U, 0xFFFFFFFFU, 0x7FFFU, 1}}, -2147483648UL}, /* -QNaN */
+
+ /* Number. */
+ {{.ldt = {0x2168C000U, 0xC90FDAA2U, 0x3FFFU + 0x0001U, 0}}, +3}, /* PI */
+ {{.ldt = {0x2168C000U, 0xC90FDAA2U, 0x3FFFU + 0x0001U, 1}}, -3}, /* -PI */
+
+
+ {{.ldt = {0x00000000U, 0xF0000000U, 0x3FFFU + 0x0U, 0}}, +2}, /* 1.875000 */
+ {{.ldt = {0x00000000U, 0xF0000000U, 0x3FFFU + 0x0U, 1}}, -2}, /* -1.875000 */
+ {{.ldt = {0x00000000U, 0xD0000000U, 0x3FFFU + 0x0U, 0}}, +2}, /* 1.625000 */
+ {{.ldt = {0x00000000U, 0xD0000000U, 0x3FFFU + 0x0U, 1}}, -2}, /* -1.625000 */
+ {{.ldt = {0xF7A0B800U, 0xC00010C6U, 0x3FFFU + 0x0U, 0}}, +2}, /* 1.500002 */
+ {{.ldt = {0xF7A0B800U, 0xC00010C6U, 0x3FFFU + 0x0U, 1}}, -2}, /* -1.500002 */
+ {{.ldt = {0x00000000U, 0xC0000000U, 0x3FFFU + 0x0U, 0}}, +2}, /* 1.500000 */
+ {{.ldt = {0x00000000U, 0xC0000000U, 0x3FFFU + 0x0U, 1}}, -2}, /* -1.500000 */
+ {{.ldt = {0x085F4800U, 0xBFFFEF39U, 0x3FFFU + 0x0U, 0}}, +1}, /* 1.499998 */
+ {{.ldt = {0x085F4800U, 0xBFFFEF39U, 0x3FFFU + 0x0U, 1}}, -1}, /* -1.499998 */
+ {{.ldt = {0x00000000U, 0xB0000000U, 0x3FFFU + 0x0U, 0}}, +1}, /* 1.375000 */
+ {{.ldt = {0x00000000U, 0xB0000000U, 0x3FFFU + 0x0U, 1}}, -1}, /* -1.375000 */
+ {{.ldt = {0x00000000U, 0x90000000U, 0x3FFFU + 0x0U, 0}}, +1}, /* 1.125000 */
+ {{.ldt = {0x00000000U, 0x90000000U, 0x3FFFU + 0x0U, 1}}, -1}, /* -1.125000 */
+
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0016U, 0}}, +4194304}, /* 4194304.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0016U, 1}}, -4194304}, /* -4194304.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0017U, 0}}, +8388608}, /* 8388608.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0017U, 1}}, -8388608}, /* -8388608.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0018U, 0}}, +16777216}, /* 16777216.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0018U, 1}}, -16777216}, /* -16777216.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x001EU, 0}}, +1073741824}, /* 1073741824.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x001EU, 1}}, -1073741824}, /* -1073741824.000000 */
+ {{.ldt = {0x00000000U, 0xFFFFFFFEU, 0x3FFFU + 0x001EU, 0}}, +2147483647L}, /* 2147483647.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x001FU, 1}}, -2147483648UL}, /* -2147483648.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0020U, 0}}, -2147483648UL}, /* 4294967296.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0020U, 1}}, -2147483648UL} /* -4294967296.000000 */
+};
+
+static const size_t n_tests_long_double = sizeof(tests_long_double) / sizeof(tests_long_double[0]);
+
+
+
+int main(void)
+{
+ unsigned int i, counter;
+
+ for (counter = i = 0; i < n_tests_long_double; i++)
+ {
+ long int result = lrintl(tests_long_double[i].value.ld);
+
+ if (tests_long_double[i].should_be == result)
+ counter++;
+ else
+ printf("lrintl test failed: value to round = %.6Lg result = %ld should be = %ld\n", tests_long_double[i].value.ld, result, tests_long_double[i].should_be);
+ }
+ printf("%s\n", (counter < n_tests_long_double) ? "lrintl test failed." : "lrintl test succeded.");
+
+ return 0;
+}
diff -aprNU5 djgpp.orig/tests/libc/c99/math/makefile djgpp/tests/libc/c99/math/makefile
--- djgpp.orig/tests/libc/c99/math/makefile 2013-03-23 12:55:00 +0100
+++ djgpp/tests/libc/c99/math/makefile 2013-10-14 22:39:42 +0100
@@ -2,7 +2,12 @@ TOP=../..
SRC += t-fpclas.c
SRC += t-nan.c
SRC += t-nan2.c
SRC += t-ismac.c
+SRC += t-llrint.c
+SRC += t-llrintl.c
+SRC += t-lrint.c
+SRC += t-lrintf.c
+SRC += t-lrintl.c
include $(TOP)/../makefile.inc
diff -aprNU5 djgpp.orig/tests/libc/c99/math/t-llrint.c djgpp/tests/libc/c99/math/t-llrint.c
--- djgpp.orig/tests/libc/c99/math/t-llrint.c 1970-01-01 01:00:00 +0100
+++ djgpp/tests/libc/c99/math/t-llrint.c 2013-10-14 22:39:42 +0100
@@ -0,0 +1,107 @@
+/* Copyright (C) 2013 DJ Delorie, see COPYING.DJ for details */
+
+/* Shall give the same results than /djgpp/tests/cygnus/t-llrint.c */
+
+
+#include <stdio.h>
+#include <math.h>
+#include <libc/ieee.h>
+
+typedef struct {
+ const _double_union_t value; /* test value */
+ const long long int should_be; /* result */
+} entry_t;
+
+static const entry_t tests_double[] =
+{
+ /* test value */
+ /* value should be */
+
+ /* Zeros. */
+ {{.dt = {0x0U, 0x0U, 0x0U, 0}}, 0}, /* 0.0 */
+ {{.dt = {0x0U, 0x0U, 0x0U, 1}}, 0}, /* -0.0 */
+
+ /* Subnormals aka denormals. */
+ {{.dt = {0x1U, 0x0U, 0x0U, 0}}, 0}, /* Very small number. */
+ {{.dt = {0x1U, 0x0U, 0x0U, 1}}, 0}, /* Very small -number. */
+
+ /* Normals. */
+ {{.dt = {0x1U, 0x0U, 0x1U, 0}}, 0}, /* Small number. */
+ {{.dt = {0x1U, 0x0U, 0x1U, 1}}, 0}, /* Small -number. */
+ {{.dt = {0xFFFFFFFFU, 0x7FFFFU, 0x7FEU, 0}}, -9.223372036854775808E18}, /* Big number. */
+ {{.dt = {0xFFFFFFFFU, 0x7FFFFU, 0x7FEU, 1}}, -9.223372036854775808E18}, /* Big -number. */
+
+ /* Infs. */
+ {{.dt = {0x0U, 0x0U, 0x7FFU, 0}}, -9.223372036854775808E18}, /* Inf */
+ {{.dt = {0x0U, 0x0U, 0x7FFU, 1}}, -9.223372036854775808E18}, /* -Inf */
+
+ /* NaNs. */
+ {{.dt = {0x1U, 0x0U, 0x7FFU, 0}}, -9.223372036854775808E18}, /* SNaN */
+ {{.dt = {0x1U, 0x0U, 0x7FFU, 1}}, -9.223372036854775808E18}, /* -SNaN */
+ {{.dt = {0x0U, 0xFFFFFU, 0x7FFU, 1}}, -9.223372036854775808E18}, /* QNaN */
+ {{.dt = {0x0U, 0xFFFFFU, 0x7FFU, 0}}, -9.223372036854775808E18}, /* -QNaN */
+
+
+ /* Number. */
+ {{.dt = {0x54442D18U, 0x921FBU, 0x3FFU + 0x001U, 0}}, +3}, /* PI */
+ {{.dt = {0x54442D18U, 0x921FBU, 0x3FFU + 0x001U, 1}}, -3}, /* -PI */
+
+ {{.dt = {0x00000000U, 0xE0000U, 0x3FFU + 0x0U, 0}}, +2}, /* 1.875000 */
+ {{.dt = {0x00000000U, 0xE0000U, 0x3FFU + 0x0U, 1}}, -2}, /* -1.875000 */
+ {{.dt = {0x00000000U, 0xA0000U, 0x3FFU + 0x0U, 0}}, +2}, /* 1.625000 */
+ {{.dt = {0x00000000U, 0xA0000U, 0x3FFU + 0x0U, 1}}, -2}, /* -1.625000 */
+ {{.dt = {0x18DEF417U, 0x80002U, 0x3FFU + 0x0U, 0}}, +2}, /* 1.500002 */
+ {{.dt = {0x18DEF417U, 0x80002U, 0x3FFU + 0x0U, 1}}, -2}, /* -1.500002 */
+ {{.dt = {0x00000000U, 0x80000U, 0x3FFU + 0x0U, 0}}, +2}, /* 1.500000 */
+ {{.dt = {0x00000000U, 0x80000U, 0x3FFU + 0x0U, 1}}, -2}, /* -1.500000 */
+ {{.dt = {0xE7210BE9U, 0x7F9FDU, 0x3FFU + 0x0U, 0}}, +1}, /* 1.499998 */
+ {{.dt = {0xE7210BE9U, 0x7F9FDU, 0x3FFU + 0x0U, 1}}, -1}, /* -1.499998 */
+ {{.dt = {0x00000000U, 0x60000U, 0x3FFU + 0x0U, 0}}, +1}, /* 1.375000 */
+ {{.dt = {0x00000000U, 0x60000U, 0x3FFU + 0x0U, 1}}, -1}, /* -1.375000 */
+ {{.dt = {0x00000000U, 0x20000U, 0x3FFU + 0x0U, 0}}, +1}, /* 1.125000 */
+ {{.dt = {0x00000000U, 0x20000U, 0x3FFU + 0x0U, 1}}, -1}, /* -1.125000 */
+
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x016U, 0}}, +4194304}, /* 4194304.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x016U, 1}}, -4194304}, /* -4194304.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x017U, 0}}, +8388608}, /* 8388608.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x017U, 1}}, -8388608}, /* -8388608.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x018U, 0}}, +16777216}, /* 16777216.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x018U, 1}}, -16777216}, /* -16777216.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x01EU, 0}}, +1073741824}, /* 1073741824.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x01EU, 1}}, -1073741824}, /* -1073741824.000000 */
+ {{.dt = {0xFFC00000U, 0xFFFFFU, 0x3FFU + 0x01EU, 0}}, +2147483647LL}, /* 2147483647.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x01FU, 1}}, -2147483648LL}, /* -2147483648.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x020U, 0}}, +4294967296}, /* 4294967296.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x020U, 1}}, -4294967296}, /* -4294967296.000000 */
+ {{.dt = {0xACF13400U, 0x02468U, 0x3FFU + 0x033U, 0}}, 2271815812028928}, /* 2271815812028928.000000 */
+ {{.dt = {0xACF13400U, 0x02468U, 0x3FFU + 0x033U, 1}}, -2271815812028928}, /* -2271815812028928.000000 */
+ {{.dt = {0x56789AB0U, 0x01234U, 0x3FFU + 0x034U, 0}}, 4523615625714352}, /* 4523615625714352.000000 */
+ {{.dt = {0x56789AB0U, 0x01234U, 0x3FFU + 0x034U, 1}}, -4523615625714352}, /* -4523615625714352.000000 */
+ {{.dt = {0xA9876543U, 0xFEDCBU, 0x3FFU + 0x034U, 0}}, 8987183256397123}, /* 8987183256397123.000000 */
+ {{.dt = {0xA9876543U, 0xFEDCBU, 0x3FFU + 0x034U, 1}}, -8987183256397123}, /* -8987183256397123.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x035U, 0}}, 9007199254740992}, /* 9007199254740992.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x035U, 1}}, -9007199254740992}, /* -9007199254740992.000000 */
+ {{.dt = {0x6789ABCEU, 0x12345U, 0x3FFU + 0x035U, 0}}, 9647711201744796}, /* 9647711201744796.000000 */
+ {{.dt = {0x6789ABCEU, 0x12345U, 0x3FFU + 0x035U, 1}}, -9647711201744796} /* -9647711201744796.000000 */
+};
+
+static const size_t n_tests_double = sizeof(tests_double) / sizeof(tests_double[0]);
+
+
+int main(void)
+{
+ unsigned int i, counter;
+
+ for (counter = i = 0; i < n_tests_double; i++)
+ {
+ long long int result = llrint(tests_double[i].value.d);
+
+ if (tests_double[i].should_be == result)
+ counter++;
+ else
+ printf("llrint test failed: value to round = %.6g result = %lld should be = %lld\n", tests_double[i].value.d, result, tests_double[i].should_be);
+ }
+ printf("%s\n", (counter < n_tests_double) ? "llrint test failed." : "llrint test succeded.");
+
+ return 0;
+}
diff -aprNU5 djgpp.orig/tests/libc/c99/math/t-llrintl.c djgpp/tests/libc/c99/math/t-llrintl.c
--- djgpp.orig/tests/libc/c99/math/t-llrintl.c 1970-01-01 01:00:00 +0100
+++ djgpp/tests/libc/c99/math/t-llrintl.c 2013-10-14 22:39:42 +0100
@@ -0,0 +1,128 @@
+/* Copyright (C) 2013 DJ Delorie, see COPYING.DJ for details */
+
+/* Shall give the same results than /djgpp/tests/cygnus/t-llrintl.c */
+
+
+#include <stdio.h>
+#include <math.h>
+#include <libc/ieee.h>
+
+typedef struct {
+ const _longdouble_union_t value; /* test value */
+ const long long int should_be; /* result */
+} entry_t;
+
+static const entry_t tests_long_double[] =
+{
+ /* test value */
+ /* value should be */
+
+ /* Zeros. */
+ {{.ldt = {0x0U, 0x0U, 0x0U, 0}}, 0}, /* 0.0 */
+ {{.ldt = {0x0U, 0x0U, 0x0U, 1}}, 0}, /* -0.0 */
+
+ /* Subnormals aka denormals. */
+ {{.ldt = {0x1U, 0x0U, 0x0U, 0}}, 0}, /* Very small number. */
+ {{.ldt = {0x1U, 0x0U, 0x0U, 1}}, 0}, /* Very small -number. */
+
+ /* Normals. */
+ {{.ldt = {0x0U, 0x80000000U, 0x1U, 0}}, 0}, /* Small number. */
+ {{.ldt = {0x0U, 0x80000000U, 0x1U, 1}}, 0}, /* Small -number. */
+ {{.ldt = {0xFFFFFFFFU, 0xFFFFFFFFU, 0x7FFEU, 0}}, -9.223372036854775808E18}, /* Big number. */
+ {{.ldt = {0xFFFFFFFFU, 0xFFFFFFFFU, 0x7FFEU, 1}}, -9.223372036854775808E18}, /* Big -number. */
+
+ /* Infs. */
+ {{.ldt = {0x0U, 0x80000000U, 0x7FFFU, 0}}, -9.223372036854775808E18}, /* Inf */
+ {{.ldt = {0x0U, 0x80000000U, 0x7FFFU, 1}}, -9.223372036854775808E18}, /* -Inf */
+
+ /* NaNs. */
+ {{.ldt = {0x1U, 0x80000000U, 0x7FFFU, 0}}, -9.223372036854775808E18}, /* SNaN */
+ {{.ldt = {0x1U, 0x80000000U, 0x7FFFU, 1}}, -9.223372036854775808E18}, /* -SNaN */
+ {{.ldt = {0x0U, 0xFFFFFFFFU, 0x7FFFU, 0}}, -9.223372036854775808E18}, /* QNaN */
+ {{.ldt = {0x0U, 0xFFFFFFFFU, 0x7FFFU, 1}}, -9.223372036854775808E18}, /* -QNaN */
+
+ /* Number. */
+ {{.ldt = {0x2168C000U, 0xC90FDAA2U, 0x3FFFU + 0x0001U, 0}}, +3}, /* PI */
+ {{.ldt = {0x2168C000U, 0xC90FDAA2U, 0x3FFFU + 0x0001U, 1}}, -3}, /* -PI */
+
+
+ {{.ldt = {0x00000000U, 0xF0000000U, 0x3FFFU + 0x0U, 0}}, +2}, /* 1.875000 */
+ {{.ldt = {0x00000000U, 0xF0000000U, 0x3FFFU + 0x0U, 1}}, -2}, /* -1.875000 */
+ {{.ldt = {0x00000000U, 0xD0000000U, 0x3FFFU + 0x0U, 0}}, +2}, /* 1.625000 */
+ {{.ldt = {0x00000000U, 0xD0000000U, 0x3FFFU + 0x0U, 1}}, -2}, /* -1.625000 */
+ {{.ldt = {0xF7A0B800U, 0xC00010C6U, 0x3FFFU + 0x0U, 0}}, +2}, /* 1.500002 */
+ {{.ldt = {0xF7A0B800U, 0xC00010C6U, 0x3FFFU + 0x0U, 1}}, -2}, /* -1.500002 */
+ {{.ldt = {0x00000000U, 0xC0000000U, 0x3FFFU + 0x0U, 0}}, +2}, /* 1.500000 */
+ {{.ldt = {0x00000000U, 0xC0000000U, 0x3FFFU + 0x0U, 1}}, -2}, /* -1.500000 */
+ {{.ldt = {0x085F4800U, 0xBFFFEF39U, 0x3FFFU + 0x0U, 0}}, +1}, /* 1.499998 */
+ {{.ldt = {0x085F4800U, 0xBFFFEF39U, 0x3FFFU + 0x0U, 1}}, -1}, /* -1.499998 */
+ {{.ldt = {0x00000000U, 0xB0000000U, 0x3FFFU + 0x0U, 0}}, +1}, /* 1.375000 */
+ {{.ldt = {0x00000000U, 0xB0000000U, 0x3FFFU + 0x0U, 1}}, -1}, /* -1.375000 */
+ {{.ldt = {0x00000000U, 0x90000000U, 0x3FFFU + 0x0U, 0}}, +1}, /* 1.125000 */
+ {{.ldt = {0x00000000U, 0x90000000U, 0x3FFFU + 0x0U, 1}}, -1}, /* -1.125000 */
+
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0016U, 0}}, +4194304}, /* 4194304.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0016U, 1}}, -4194304}, /* -4194304.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0017U, 0}}, +8388608}, /* 8388608.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0017U, 1}}, -8388608}, /* -8388608.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0018U, 0}}, +16777216}, /* 16777216.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0018U, 1}}, -16777216}, /* -16777216.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x001EU, 0}}, +1073741824}, /* 1073741824.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x001EU, 1}}, -1073741824}, /* -1073741824.000000 */
+ {{.ldt = {0x00000000U, 0xFFFFFFFEU, 0x3FFFU + 0x001EU, 0}}, +2147483647LL}, /* 2147483647.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x001FU, 1}}, -2147483648LL}, /* -2147483648.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0020U, 0}}, +4294967296}, /* 4294967296.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0020U, 1}}, -4294967296}, /* -4294967296.000000 */
+
+ {{.ldt = {0x89A00000U, 0x81234567U, 0x3FFFU + 0x0033U, 0}}, 2271815812028928}, /* 2271815812028928.000000 */
+ {{.ldt = {0x89A00000U, 0x81234567U, 0x3FFFU + 0x0033U, 1}}, -2271815812028928}, /* -2271815812028928.000000 */
+ {{.ldt = {0xC4D58000U, 0x8091A2B3U, 0x3FFFU + 0x0034U, 0}}, 4523615625714352}, /* 4523615625714352.000000 */
+ {{.ldt = {0xC4D58000U, 0x8091A2B3U, 0x3FFFU + 0x0034U, 1}}, -4523615625714352}, /* -4523615625714352.000000 */
+ {{.ldt = {0x3B2A1800U, 0xFF6E5D4CU, 0x3FFFU + 0x0034U, 0}}, 8987183256397123}, /* 8987183256397123.000000 */
+ {{.ldt = {0x3B2A1800U, 0xFF6E5D4CU, 0x3FFFU + 0x0034U, 1}}, -8987183256397123}, /* -8987183256397123.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0035U, 0}}, 9007199254740992}, /* 9007199254740992.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0035U, 1}}, -9007199254740992}, /* -9007199254740992.000000 */
+ {{.ldt = {0x4D5E7000U, 0x891A2B3CU, 0x3FFFU + 0x0035U, 0}}, 9647711201744796}, /* 9647711201744796.000000 */
+ {{.ldt = {0x4D5E7000U, 0x891A2B3CU, 0x3FFFU + 0x0035U, 1}}, -9647711201744796}, /* -9647711201744796.000000 */
+ {{.ldt = {0x76543000U, 0xFEDCBA98U, 0x3FFFU + 0x0041U, 0}}, -9.223372036854775808E18}, /* 73459034177972256768.000000 */
+ {{.ldt = {0x76543000U, 0xFEDCBA98U, 0x3FFFU + 0x0041U, 1}}, -9.223372036854775808E18}, /* -73459034177972256768.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x003FU, 0}}, -9.223372036854775808E18}, /* 9223372036854775808.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x003FU, 1}}, -9.223372036854775808E18}, /* -9223372036854775808.000000 */
+ {{.ldt = {0x00000000U, 0xC0000000U, 0x3FFFU + 0x003FU, 0}}, -9.223372036854775808E18}, /* 13835058055282163712.000000 */
+ {{.ldt = {0x00000000U, 0xC0000000U, 0x3FFFU + 0x003FU, 1}}, -9.223372036854775808E18}, /* -13835058055282163712.000000 */
+ {{.ldt = {0x00000000U, 0xF0000000U, 0x3FFFU + 0x0042U, 0}}, -9.223372036854775808E18}, /* 138350580552821637120.000000 */
+ {{.ldt = {0x00000000U, 0xF0000000U, 0x3FFFU + 0x0042U, 1}}, -9.223372036854775808E18}, /* -138350580552821637120.000000 */
+ {{.ldt = {0xBA987800U, 0xF7FFFEDCU, 0x3FFFU + 0x0042U, 0}}, -9.223372036854775808E18}, /* 142962256563249856512.000000 */
+ {{.ldt = {0xBA987800U, 0xF7FFFEDCU, 0x3FFFU + 0x0042U, 1}}, -9.223372036854775808E18}, /* -142962256563249856512.000000 */
+ {{.ldt = {0x00000000U, 0xF8000000U, 0x3FFFU + 0x0042U, 0}}, -9.223372036854775808E18}, /* 142962266571249025024.000000 */
+ {{.ldt = {0x00000000U, 0xF8000000U, 0x3FFFU + 0x0042U, 1}}, -9.223372036854775808E18}, /* -142962266571249025024.000000 */
+ {{.ldt = {0x00012000U, 0xF8000000U, 0x3FFFU + 0x0042U, 0}}, -9.223372036854775808E18}, /* 142962266571249614848.000000 */
+ {{.ldt = {0x00012000U, 0xF8000000U, 0x3FFFU + 0x0042U, 1}}, -9.223372036854775808E18}, /* -142962266571249614848.000000 */
+ {{.ldt = {0x76543000U, 0xFEDCBA98U, 0x3FFFU + 0x0042U, 0}}, -9.223372036854775808E18}, /* 146918068355944513536.000000 */
+ {{.ldt = {0x76543000U, 0xFEDCBA98U, 0x3FFFU + 0x0042U, 1}}, -9.223372036854775808E18}, /* 147573952589676396544.000000 */
+ {{.ldt = {0xFFFFF800U, 0xFFFFFFFFU, 0x3FFFU + 0x0042U, 0}}, -9.223372036854775808E18}, /* -147573952589676396544.000000 */
+ {{.ldt = {0xFFFFF800U, 0xFFFFFFFFU, 0x3FFFU + 0x0042U, 1}}, -9.223372036854775808E18}, /* -147573952589676396544.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0040U, 0}}, -9.223372036854775808E18}, /* 18446744073709551616.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0040U, 1}}, -9.223372036854775808E18} /* -18446744073709551616.000000 */
+};
+
+static const size_t n_tests_long_double = sizeof(tests_long_double) / sizeof(tests_long_double[0]);
+
+
+int main(void)
+{
+ unsigned int i, counter;
+
+ for (counter = i = 0; i < n_tests_long_double; i++)
+ {
+ long long int result = llrintl(tests_long_double[i].value.ld);
+
+ if (tests_long_double[i].should_be == result)
+ counter++;
+ else
+ printf("llrintl test failed: value to round = %.6Lg result = %lld should be = %lld\n", tests_long_double[i].value.ld, result, tests_long_double[i].should_be);
+ }
+ printf("%s\n", (counter < n_tests_long_double) ? "llrintl test failed." : "llrintl test succeded.");
+
+ return 0;
+}
diff -aprNU5 djgpp.orig/tests/libc/c99/math/t-lrint.c djgpp/tests/libc/c99/math/t-lrint.c
--- djgpp.orig/tests/libc/c99/math/t-lrint.c 1970-01-01 01:00:00 +0100
+++ djgpp/tests/libc/c99/math/t-lrint.c 2013-10-14 22:39:42 +0100
@@ -0,0 +1,97 @@
+/* Copyright (C) 2013 DJ Delorie, see COPYING.DJ for details */
+
+/* Shall give the same results than /djgpp/tests/cygnus/t-lrint.c */
+
+
+#include <stdio.h>
+#include <math.h>
+#include <libc/ieee.h>
+
+typedef struct {
+ const _double_union_t value; /* test value */
+ const long int should_be; /* result */
+} entry_t;
+
+static const entry_t tests_double[] =
+{
+ /* test value */
+ /* value should be */
+
+ /* Zeros. */
+ {{.dt = {0x0U, 0x0U, 0x0U, 0}}, 0}, /* 0.0 */
+ {{.dt = {0x0U, 0x0U, 0x0U, 1}}, 0}, /* -0.0 */
+
+ /* Subnormals aka denormals. */
+ {{.dt = {0x1U, 0x0U, 0x0U, 0}}, 0}, /* Very small number. */
+ {{.dt = {0x1U, 0x0U, 0x0U, 1}}, 0}, /* Very small -number. */
+
+ /* Normals. */
+ {{.dt = {0x1U, 0x0U, 0x1U, 0}}, 0}, /* Small number. */
+ {{.dt = {0x1U, 0x0U, 0x1U, 1}}, 0}, /* Small -number. */
+ {{.dt = {0xFFFFFFFFU, 0x7FFFFU, 0x7FEU, 0}}, -2147483648}, /* Big number. */
+ {{.dt = {0xFFFFFFFFU, 0x7FFFFU, 0x7FEU, 1}}, -2147483648}, /* Big -number. */
+
+ /* Infs. */
+ {{.dt = {0x0U, 0x0U, 0x7FFU, 0}}, -2147483648L}, /* Inf */
+ {{.dt = {0x0U, 0x0U, 0x7FFU, 1}}, -2147483648L}, /* -Inf */
+
+ /* NaNs. */
+ {{.dt = {0x1U, 0x0U, 0x7FFU, 0}}, -2147483648L}, /* SNaN */
+ {{.dt = {0x1U, 0x0U, 0x7FFU, 1}}, -2147483648L}, /* -SNaN */
+ {{.dt = {0x0U, 0xFFFFFU, 0x7FFU, 1}}, -2147483648L}, /* QNaN */
+ {{.dt = {0x0U, 0xFFFFFU, 0x7FFU, 0}}, -2147483648L}, /* -QNaN */
+
+
+ /* Number. */
+ {{.dt = {0x54442D18U, 0x921FBU, 0x3FFU + 0x001U, 0}}, +3}, /* PI */
+ {{.dt = {0x54442D18U, 0x921FBU, 0x3FFU + 0x001U, 1}}, -3}, /* -PI */
+
+ {{.dt = {0x00000000U, 0xE0000U, 0x3FFU + 0x0U, 0}}, +2}, /* 1.875000 */
+ {{.dt = {0x00000000U, 0xE0000U, 0x3FFU + 0x0U, 1}}, -2}, /* -1.875000 */
+ {{.dt = {0x00000000U, 0xA0000U, 0x3FFU + 0x0U, 0}}, +2}, /* 1.625000 */
+ {{.dt = {0x00000000U, 0xA0000U, 0x3FFU + 0x0U, 1}}, -2}, /* -1.625000 */
+ {{.dt = {0x18DEF417U, 0x80002U, 0x3FFU + 0x0U, 0}}, +2}, /* 1.500002 */
+ {{.dt = {0x18DEF417U, 0x80002U, 0x3FFU + 0x0U, 1}}, -2}, /* -1.500002 */
+ {{.dt = {0x00000000U, 0x80000U, 0x3FFU + 0x0U, 0}}, +2}, /* 1.500000 */
+ {{.dt = {0x00000000U, 0x80000U, 0x3FFU + 0x0U, 1}}, -2}, /* -1.500000 */
+ {{.dt = {0xE7210BE9U, 0x7F9FDU, 0x3FFU + 0x0U, 0}}, +1}, /* 1.499998 */
+ {{.dt = {0xE7210BE9U, 0x7F9FDU, 0x3FFU + 0x0U, 1}}, -1}, /* -1.499998 */
+ {{.dt = {0x00000000U, 0x60000U, 0x3FFU + 0x0U, 0}}, +1}, /* 1.375000 */
+ {{.dt = {0x00000000U, 0x60000U, 0x3FFU + 0x0U, 1}}, -1}, /* -1.375000 */
+ {{.dt = {0x00000000U, 0x20000U, 0x3FFU + 0x0U, 0}}, +1}, /* 1.125000 */
+ {{.dt = {0x00000000U, 0x20000U, 0x3FFU + 0x0U, 1}}, -1}, /* -1.125000 */
+
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x016U, 0}}, +4194304}, /* 4194304.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x016U, 1}}, -4194304}, /* -4194304.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x017U, 0}}, +8388608}, /* 8388608.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x017U, 1}}, -8388608}, /* -8388608.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x018U, 0}}, +16777216}, /* 16777216.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x018U, 1}}, -16777216}, /* -16777216.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x01EU, 0}}, +1073741824}, /* 1073741824.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x01EU, 1}}, -1073741824}, /* -1073741824.000000 */
+ {{.dt = {0xFFC00000U, 0xFFFFFU, 0x3FFU + 0x01EU, 0}}, +2147483647L}, /* 2147483647.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x01FU, 1}}, -2147483648L}, /* -2147483648.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x020U, 0}}, -2147483648L}, /* 4294967296.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x020U, 1}}, -2147483648L} /* -4294967296.000000 */
+};
+
+static const size_t n_tests_double = sizeof(tests_double) / sizeof(tests_double[0]);
+
+
+int main(void)
+{
+ unsigned int i, counter;
+
+ for (counter = i = 0; i < n_tests_double; i++)
+ {
+ long int result = lrint(tests_double[i].value.d);
+
+ if (tests_double[i].should_be == result)
+ counter++;
+ else
+ printf("lrint test failed: value to round = %.6g result = %ld should be = %ld\n", tests_double[i].value.d, result, tests_double[i].should_be);
+ }
+ printf("%s\n", (counter < n_tests_double) ? "lrint test failed." : "lrint test succeded.");
+
+ return 0;
+}
diff -aprNU5 djgpp.orig/tests/libc/c99/math/t-lrintf.c djgpp/tests/libc/c99/math/t-lrintf.c
--- djgpp.orig/tests/libc/c99/math/t-lrintf.c 1970-01-01 01:00:00 +0100
+++ djgpp/tests/libc/c99/math/t-lrintf.c 2013-10-14 22:39:42 +0100
@@ -0,0 +1,106 @@
+/* Copyright (C) 2013 DJ Delorie, see COPYING.DJ for details */
+
+/* Shall give the same results than /djgpp/tests/cygnus/t-lrintf.c */
+
+
+#include <stdio.h>
+#include <math.h>
+#include <libc/ieee.h>
+
+typedef struct {
+ const _float_union_t value; /* test value */
+ const long int should_be; /* result */
+} entry_t;
+
+static const entry_t tests_float[] =
+{
+ /* test value */
+ /* value should be */
+
+ /* Zeros. */
+ {{.ft = {0x0U, 0x0U, 0}}, 0}, /* 0.0 */
+ {{.ft = {0x0U, 0x0U, 1}}, 0}, /* -0.0 */
+
+ /* Subnormals aka denormals. */
+ {{.ft = {0x1U, 0x0U, 0}}, 0}, /* Very small number. */
+ {{.ft = {0x1U, 0x0U, 1}}, 0}, /* Very small -number. */
+
+ /* Normals. */
+ {{.ft = {0x1U, 0x1U, 0}}, 0}, /* Small number. */
+ {{.ft = {0x1U, 0x1U, 1}}, 0}, /* Small -number. */
+ {{.ft = {0xFFFFU, 0xFEU, 0}}, -2.147483648E9}, /* Big number. */
+ {{.ft = {0xFFFFU, 0xFEU, 1}}, -2.147483648E9}, /* Big -number. */
+
+ /* Infs. */
+ {{.ft = {0x0U, 0xFFU, 0}}, -2.147483648E9}, /* Inf */
+ {{.ft = {0x0U, 0xFFU, 1}}, -2.147483648E9}, /* -Inf */
+
+ /* NaNs. */
+ {{.ft = {0x1U, 0xFFU, 0}}, -2.147483648E9}, /* SNaN */
+ {{.ft = {0x1U, 0xFFU, 1}}, -2.147483648E9}, /* -SNaN */
+ {{.ft = {0x7FFFFFU, 0xFFU, 0}}, -2.147483648E9}, /* QNaN */
+ {{.ft = {0x7FFFFFU, 0xFFU, 1}}, -2.147483648E9}, /* -QNaN */
+
+ /* Numbers. */
+ {{.ft = {0x490FDBU, 0x80U, 0}}, +3}, /* PI */
+ {{.ft = {0x490FDBU, 0x80U, 1}}, -3}, /* -PI */
+
+ {{.ft = {0x700000U, 0x7FU, 0}}, +2}, /* 1.875000 */
+ {{.ft = {0x700000U, 0x7FU, 1}}, -2}, /* -1.875000 */
+ {{.ft = {0x500000U, 0x7FU, 0}}, +2}, /* 1.625000 */
+ {{.ft = {0x500000U, 0x7FU, 1}}, -2}, /* -1.625000 */
+ {{.ft = {0x40000FU, 0x7FU, 0}}, +2}, /* 1.500002 */
+ {{.ft = {0x40000FU, 0x7FU, 1}}, -2}, /* -1.500002 */
+ {{.ft = {0x400000U, 0x7FU, 0}}, +2}, /* 1.500000 */
+ {{.ft = {0x400000U, 0x7FU, 1}}, -2}, /* -1.500000 */
+ {{.ft = {0x3FFFF0U, 0x7FU, 0}}, +1}, /* 1.499998 */
+ {{.ft = {0x3FFFF0U, 0x7FU, 1}}, -1}, /* -1.499998 */
+ {{.ft = {0x300000U, 0x7FU, 0}}, +1}, /* 1.375000 */
+ {{.ft = {0x300000U, 0x7FU, 1}}, -1}, /* -1.375000 */
+ {{.ft = {0x100000U, 0x7FU, 0}}, +1}, /* 1.125000 */
+ {{.ft = {0x100000U, 0x7FU, 1}}, -1}, /* -1.125000 */
+
+ {{.ft = {0x000000U, 0x7FU + 0x16U, 0}}, +4194304}, /* 4194304.000000 */
+ {{.ft = {0x000000U, 0x7FU + 0x16U, 1}}, -4194304}, /* -4194304.000000 */
+ {{.ft = {0x000000U, 0x7FU + 0x17U, 0}}, +8388608}, /* 8388608.000000 */
+ {{.ft = {0x000000U, 0x7FU + 0x17U, 1}}, -8388608}, /* -8388608.000000 */
+ {{.ft = {0x000000U, 0x7FU + 0x18U, 0}}, +16777216}, /* 16777216.000000 */
+ {{.ft = {0x000000U, 0x7FU + 0x18U, 1}}, -16777216}, /* -16777216.000000 */
+
+ {{.ft = {0x000000U, 0x7FU + 0x1EU, 0}}, +1073741824}, /* 1073741824.000000 */
+ {{.ft = {0x000000U, 0x7FU + 0x1EU, 1}}, -1073741824}, /* -1073741824.000000 */
+// {{.ft = {0x000000U, 0x7FU + 0x1FU, 0}}, +2.147483648E9}, /* 2147483648.000000 */
+ {{.ft = {0x000000U, 0x7FU + 0x1FU, 1}}, -2.147483648E9}, /* -2147483648.000000 */
+ {{.ft = {0x000000U, 0x7FU + 0x20U, 0}}, -2.147483648E9}, /* 4294967296.000000 */
+ {{.ft = {0x000000U, 0x7FU + 0x20U, 1}}, -2.147483648E9}, /* -4294967296.000000 */
+
+ /* Different mantissa patterns. */
+ {{.ft = {0x7FFFFFU, 0x96U, 0}}, +16777215}, /* 16777215.000000 */
+ {{.ft = {0x7FF000U, 0x95U, 0}}, +8386560}, /* 8386560.000000 */
+ {{.ft = {0x1555FFU, 0x8DU, 0}}, +19115}, /* 19115.000000 */
+ {{.ft = {0x7FF000U, 0x96U, 1}}, -16773120}, /* -16773120.000000 */
+ {{.ft = {0x7FFFFEU, 0x95U, 1}}, -8388607}, /* -8388607.000000 */
+ {{.ft = {0x1555FFU, 0x8DU, 1}}, -19115} /* -19115.000000 */
+
+};
+
+static const size_t n_tests_float = sizeof(tests_float) / sizeof(tests_float[0]);
+
+
+int main(void)
+{
+ unsigned int i, counter;
+
+ for (counter = i = 0; i < n_tests_float; i++)
+ {
+ long int result = lrintf(tests_float[i].value.f);
+
+ if (tests_float[i].should_be == result)
+ counter++;
+ else
+ printf("lrintf test failed: value to round = %.6f result = %ld should be = %ld\n", tests_float[i].value.f, result, tests_float[i].should_be);
+ }
+ printf("%s\n", (counter < n_tests_float) ? "lrintf test failed." : "lrintf test succeded.");
+
+ return 0;
+}
diff -aprNU5 djgpp.orig/tests/libc/c99/math/t-lrintl.c djgpp/tests/libc/c99/math/t-lrintl.c
--- djgpp.orig/tests/libc/c99/math/t-lrintl.c 1970-01-01 01:00:00 +0100
+++ djgpp/tests/libc/c99/math/t-lrintl.c 2013-10-14 22:39:42 +0100
@@ -0,0 +1,99 @@
+/* Copyright (C) 2013 DJ Delorie, see COPYING.DJ for details */
+
+/* Shall give the same results than /djgpp/tests/cygnus/t-lrintl.c */
+
+
+#include <stdio.h>
+#include <math.h>
+#include <libc/ieee.h>
+
+typedef struct {
+ const _longdouble_union_t value; /* test value */
+ const long int should_be; /* result */
+} entry_t;
+
+static const entry_t tests_long_double[] =
+{
+ /* test value */
+ /* value should be */
+
+ /* Zeros. */
+ {{.ldt = {0x0U, 0x0U, 0x0U, 0}}, 0}, /* 0.0 */
+ {{.ldt = {0x0U, 0x0U, 0x0U, 1}}, 0}, /* -0.0 */
+
+
+ /* Subnormals aka denormals. */
+ {{.ldt = {0x1U, 0x0U, 0x0U, 0}}, 0}, /* Very small number. */
+ {{.ldt = {0x1U, 0x0U, 0x0U, 1}}, 0}, /* Very small -number. */
+
+ /* Normals. */
+ {{.ldt = {0x0U, 0x80000000U, 0x1U, 0}}, 0}, /* Small number. */
+ {{.ldt = {0x0U, 0x80000000U, 0x1U, 1}}, 0}, /* Small -number. */
+ {{.ldt = {0xFFFFFFFFU, 0xFFFFFFFFU, 0x7FFEU, 0}}, -2147483648L}, /* Big number. */
+ {{.ldt = {0xFFFFFFFFU, 0xFFFFFFFFU, 0x7FFEU, 1}}, -2147483648L}, /* Big -number. */
+
+ /* Infs. */
+ {{.ldt = {0x0U, 0x80000000U, 0x7FFFU, 0}}, -2147483648L}, /* Inf */
+ {{.ldt = {0x0U, 0x80000000U, 0x7FFFU, 1}}, -2147483648L}, /* -Inf */
+
+ /* NaNs. */
+ {{.ldt = {0x1U, 0x80000000U, 0x7FFFU, 0}}, -2147483648L}, /* SNaN */
+ {{.ldt = {0x1U, 0x80000000U, 0x7FFFU, 1}}, -2147483648L}, /* -SNaN */
+ {{.ldt = {0x0U, 0xFFFFFFFFU, 0x7FFFU, 0}}, -2147483648L}, /* QNaN */
+ {{.ldt = {0x0U, 0xFFFFFFFFU, 0x7FFFU, 1}}, -2147483648L}, /* -QNaN */
+
+ /* Number. */
+ {{.ldt = {0x2168C000U, 0xC90FDAA2U, 0x3FFFU + 0x0001U, 0}}, +3}, /* PI */
+ {{.ldt = {0x2168C000U, 0xC90FDAA2U, 0x3FFFU + 0x0001U, 1}}, -3}, /* -PI */
+
+
+ {{.ldt = {0x00000000U, 0xF0000000U, 0x3FFFU + 0x0U, 0}}, +2}, /* 1.875000 */
+ {{.ldt = {0x00000000U, 0xF0000000U, 0x3FFFU + 0x0U, 1}}, -2}, /* -1.875000 */
+ {{.ldt = {0x00000000U, 0xD0000000U, 0x3FFFU + 0x0U, 0}}, +2}, /* 1.625000 */
+ {{.ldt = {0x00000000U, 0xD0000000U, 0x3FFFU + 0x0U, 1}}, -2}, /* -1.625000 */
+ {{.ldt = {0xF7A0B800U, 0xC00010C6U, 0x3FFFU + 0x0U, 0}}, +2}, /* 1.500002 */
+ {{.ldt = {0xF7A0B800U, 0xC00010C6U, 0x3FFFU + 0x0U, 1}}, -2}, /* -1.500002 */
+ {{.ldt = {0x00000000U, 0xC0000000U, 0x3FFFU + 0x0U, 0}}, +2}, /* 1.500000 */
+ {{.ldt = {0x00000000U, 0xC0000000U, 0x3FFFU + 0x0U, 1}}, -2}, /* -1.500000 */
+ {{.ldt = {0x085F4800U, 0xBFFFEF39U, 0x3FFFU + 0x0U, 0}}, +1}, /* 1.499998 */
+ {{.ldt = {0x085F4800U, 0xBFFFEF39U, 0x3FFFU + 0x0U, 1}}, -1}, /* -1.499998 */
+ {{.ldt = {0x00000000U, 0xB0000000U, 0x3FFFU + 0x0U, 0}}, +1}, /* 1.375000 */
+ {{.ldt = {0x00000000U, 0xB0000000U, 0x3FFFU + 0x0U, 1}}, -1}, /* -1.375000 */
+ {{.ldt = {0x00000000U, 0x90000000U, 0x3FFFU + 0x0U, 0}}, +1}, /* 1.125000 */
+ {{.ldt = {0x00000000U, 0x90000000U, 0x3FFFU + 0x0U, 1}}, -1}, /* -1.125000 */
+
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0016U, 0}}, +4194304}, /* 4194304.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0016U, 1}}, -4194304}, /* -4194304.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0017U, 0}}, +8388608}, /* 8388608.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0017U, 1}}, -8388608}, /* -8388608.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0018U, 0}}, +16777216}, /* 16777216.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0018U, 1}}, -16777216}, /* -16777216.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x001EU, 0}}, +1073741824}, /* 1073741824.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x001EU, 1}}, -1073741824}, /* -1073741824.000000 */
+ {{.ldt = {0x00000000U, 0xFFFFFFFEU, 0x3FFFU + 0x001EU, 0}}, +2147483647L}, /* 2147483647.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x001FU, 1}}, -2147483648L}, /* -2147483648.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0020U, 0}}, -2147483648L}, /* 4294967296.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0020U, 1}}, -2147483648L} /* -4294967296.000000 */
+};
+
+static const size_t n_tests_long_double = sizeof(tests_long_double) / sizeof(tests_long_double[0]);
+
+
+
+int main(void)
+{
+ unsigned int i, counter;
+
+ for (counter = i = 0; i < n_tests_long_double; i++)
+ {
+ long int result = lrintl(tests_long_double[i].value.ld);
+
+ if (tests_long_double[i].should_be == result)
+ counter++;
+ else
+ printf("lrintl test failed: value to round = %.6Lg result = %ld should be = %ld\n", tests_long_double[i].value.ld, result, tests_long_double[i].should_be);
+ }
+ printf("%s\n", (counter < n_tests_long_double) ? "lrintl test failed." : "lrintl test succeded.");
+
+ return 0;
+}
2013-10-20 Juan Manuel Guerrero <juan DOT guerrero AT gmx DOT de>
* /djgpp/tests/libc/c99/math/t-llrint.c: Check for llrint.
* /djgpp/tests/libc/c99/math/t-llrintl.c: Check for llrintl.
* /djgpp/tests/libc/c99/math/t-lrint.c: Check for llrintl.
* /djgpp/tests/libc/c99/math/t-lrintf.c: Check for llrintl.
* /djgpp/tests/libc/c99/math/t-lrintl.c: Check for llrintl.
* djgpp/tests/cygnus/makefile: [l]lrint[f|l] function checks added to goal list.
2013-10-20 Juan Manuel Guerrero <juan DOT guerrero AT gmx DOT de>
* djgpp/src/libm/math/lrint.c: Define ieee_value as volatile or it is outmized away.
* djgpp/src/libm/math/lrintl.c: Define ieee_value as volatile or it is outmized away.
diff -aprNU5 djgpp.orig/src/libm/math/llrint.c djgpp/src/libm/math/llrint.c
--- djgpp.orig/src/libm/math/llrint.c 2013-10-20 14:02:18 +0100
+++ djgpp/src/libm/math/llrint.c 2013-10-20 23:34:08 +0100
@@ -58,11 +58,11 @@ ANSI C, POSIX
#define ROUND_MANTISSAH(num, unbiased_exponent) ((long long int)(((uint64_t)(num).dt.mantissah | 0x00100000ULL) >> (BIN_DIGITS_IN_MANTISSAH - (unbiased_exponent))))
#define ROUND_MANTISSAH_TO_INTEGER(num, unbiased_exponent) \
(__gnuc_extension__ \
({ \
- (num).d = two52[(num).dt.sign] + x; \
+ (num).d += two52[(num).dt.sign]; \
(num).d -= two52[(num).dt.sign]; \
(unbiased_exponent) = (num).dt.exponent - DOUBLE_BIAS; \
\
result = MAGNITUDE_IS_LESS_THAN_ONE((unbiased_exponent)) || IS_ZERO((num)) ? 0 : ROUND_MANTISSAH((num), (unbiased_exponent)); \
(long long int)result; \
@@ -73,11 +73,11 @@ ANSI C, POSIX
#define CONVERT_MANTISSA_TO_INTEGER(num, unbiased_exponent) ((long long int)(SHIFT_LEFT_MANTISSAH(num, unbiased_exponent) | (num).dt.mantissal << ((unbiased_exponent) - BIN_DIGITS_IN_FRACTION)))
#define ROUND_MANTISSA(num, unbiased_exponent) ((long long int)(SHIFT_LEFT_MANTISSAH(num, unbiased_exponent) | (num).dt.mantissal >> (BIN_DIGITS_IN_FRACTION - (unbiased_exponent))))
#define ROUND_MANTISSA_TO_INTEGER(num, unbiased_exponent) \
(__gnuc_extension__ \
({ \
- (num).d = two52[(num).dt.sign] + x; \
+ (num).d += two52[(num).dt.sign]; \
(num).d -= two52[(num).dt.sign]; \
(unbiased_exponent) = (num).dt.exponent - DOUBLE_BIAS; \
\
result = ((unbiased_exponent) == BIN_DIGITS_IN_MANTISSAH) ? (long long int)(num).dt.mantissah : ROUND_MANTISSA((num), (unbiased_exponent)); \
(long long int)result; \
@@ -106,23 +106,26 @@ llrint(double x)
long long int
llrint(x)
double x;
#endif
{
- _double_union_t ieee_value;
+ volatile _double_union_t ieee_value;
int unbiased_exponent;
- long long int result;
ieee_value.d = x;
unbiased_exponent = ieee_value.dt.exponent - DOUBLE_BIAS;
if (MAGNITUDE_IS_TOO_LARGE(unbiased_exponent)) /* The number is too large. */
return (long long int)x; /* It is left implementation defined what happens. */
- else if (NO_SIGNIFICANT_DIGITS_IN_MANTISSAL(unbiased_exponent))
- result = MAGNITUDE_IS_LESS_THAN_ONE_HALF(unbiased_exponent) ? 0 : ROUND_MANTISSAH_TO_INTEGER(ieee_value, unbiased_exponent);
else
- result = ALL_DIGITS_ARE_SIGNIFICANT(unbiased_exponent) ? CONVERT_MANTISSA_TO_INTEGER(ieee_value, unbiased_exponent) /* >= 2^63 is already an exact integer. */
- : ROUND_MANTISSA_TO_INTEGER(ieee_value, unbiased_exponent);
+ {
+ long long int result;
- return ieee_value.dt.sign ? -result : result;
+ if (NO_SIGNIFICANT_DIGITS_IN_MANTISSAL(unbiased_exponent))
+ result = MAGNITUDE_IS_LESS_THAN_ONE_HALF(unbiased_exponent) ? 0 : ROUND_MANTISSAH_TO_INTEGER(ieee_value, unbiased_exponent);
+ else
+ result = ALL_DIGITS_ARE_SIGNIFICANT(unbiased_exponent) ? CONVERT_MANTISSA_TO_INTEGER(ieee_value, unbiased_exponent) /* >= 2^63 is already an exact integer. */
+ : ROUND_MANTISSA_TO_INTEGER(ieee_value, unbiased_exponent);
+ return ieee_value.dt.sign ? -result : result;
+ }
}
diff -aprNU5 djgpp.orig/src/libm/math/llrintf.c djgpp/src/libm/math/llrintf.c
--- djgpp.orig/src/libm/math/llrintf.c 2013-10-20 14:02:20 +0100
+++ djgpp/src/libm/math/llrintf.c 2013-10-20 23:34:08 +0100
@@ -15,16 +15,16 @@
#define ALL_DIGITS_ARE_SIGNIFICANT(exp) ((exp) > (BIN_DIGITS_IN_FRACTION - 1))
#define MAGNITUDE_IS_TOO_LARGE(exp) ((exp) > (int)(sizeof(long long int) * 8) - 2)
#define MAGNITUDE_IS_LESS_THAN_ONE(exp) ((exp) < 0)
#define MAGNITUDE_IS_LESS_THAN_ONE_HALF(exp) ((exp) < -1)
#define IS_ZERO(num) ((((num).ft.mantissa & ~(1ULL << BIN_DIGITS_IN_FRACTION)) == 0) && (((num).ft.exponent & 0xFFU) == 0))
-#define CONVERT_MANTISSA_TO_INTEGER(num, unbiased_exponent) ((long long int)((uint32_t)(num).ft.mantissa | 0x00800000ULL) << ((unbiased_exponent) - BIN_DIGITS_IN_FRACTION))
-#define ROUND_MANTISSA(num, unbiased_exponent) ((long long int)((uint32_t)(num).ft.mantissa | 0x00800000ULL) >> (BIN_DIGITS_IN_FRACTION - (unbiased_exponent)))
+#define CONVERT_MANTISSA_TO_INTEGER(num, unbiased_exponent) ((long long int)(((uint32_t)(num).ft.mantissa | 0x00800000ULL) << ((unbiased_exponent) - BIN_DIGITS_IN_FRACTION)))
+#define ROUND_MANTISSA(num, unbiased_exponent) ((long long int)(((uint32_t)(num).ft.mantissa | 0x00800000ULL) >> (BIN_DIGITS_IN_FRACTION - (unbiased_exponent))))
#define ROUND_MANTISSA_TO_INTEGER(num, unbiased_exponent) \
(__gnuc_extension__ \
({ \
- (num).f = two23[(num).ft.sign] + x; \
+ (num).f += two23[(num).ft.sign]; \
(num).f -= two23[(num).ft.sign]; \
(unbiased_exponent) = (num).ft.exponent - FLOAT_BIAS; \
\
result = MAGNITUDE_IS_LESS_THAN_ONE((unbiased_exponent)) || IS_ZERO((num)) ? 0 : ROUND_MANTISSA((num), (unbiased_exponent)); \
(long long int)result; \
@@ -53,26 +53,26 @@ llrintf(float x)
long long int
llrintf(x)
float x;
#endif
{
- _float_union_t ieee_value;
+ volatile _float_union_t ieee_value;
int unbiased_exponent;
- long long int result;
ieee_value.f = x;
unbiased_exponent = ieee_value.ft.exponent - FLOAT_BIAS;
if (MAGNITUDE_IS_TOO_LARGE(unbiased_exponent)) /* The number is too large. */
return (long long int)x; /* It is left implementation defined what happens. */
else
{
+ long long int result;
+
if (MAGNITUDE_IS_LESS_THAN_ONE_HALF(unbiased_exponent))
result = 0;
else
result = ALL_DIGITS_ARE_SIGNIFICANT(unbiased_exponent) ? CONVERT_MANTISSA_TO_INTEGER(ieee_value, unbiased_exponent) /* >= 2^23 is already an exact integer. */
: ROUND_MANTISSA_TO_INTEGER(ieee_value, unbiased_exponent);
-
return ieee_value.ft.sign ? -result : result;
}
}
diff -aprNU5 djgpp.orig/src/libm/math/llrintl.c djgpp/src/libm/math/llrintl.c
--- djgpp.orig/src/libm/math/llrintl.c 2013-10-20 14:02:22 +0100
+++ djgpp/src/libm/math/llrintl.c 2013-10-20 23:34:08 +0100
@@ -22,11 +22,11 @@
#define ROUND_MANTISSAH(num, unbiased_exponent) ((long long int)((uint64_t)(num).ldt.mantissah >> (BIN_DIGITS_IN_MANTISSAH - (unbiased_exponent))))
#define ROUND_MANTISSAH_TO_INTEGER(num, unbiased_exponent) \
(__gnuc_extension__ \
({ \
- (num).ld = two63[(num).ldt.sign] + x; \
+ (num).ld += two63[(num).ldt.sign]; \
(num).ld -= two63[(num).ldt.sign]; \
(unbiased_exponent) = (num).ldt.exponent - LONG_DOUBLE_BIAS; \
\
result = MAGNITUDE_IS_LESS_THAN_ONE((unbiased_exponent)) || IS_ZERO((num)) ? 0 : ROUND_MANTISSAH((num), (unbiased_exponent)); \
(long long int)result; \
@@ -37,11 +37,11 @@
#define CONVERT_MANTISSA_TO_INTEGER(num, unbiased_exponent) ((long long int)(SHIFT_LEFT_MANTISSAH(num, unbiased_exponent) | (num).ldt.mantissal << ((unbiased_exponent) - BIN_DIGITS_IN_FRACTION)))
#define ROUND_MANTISSA(num, unbiased_exponent) ((long long int)(SHIFT_LEFT_MANTISSAH(num, unbiased_exponent) | (num).ldt.mantissal >> (BIN_DIGITS_IN_FRACTION - (unbiased_exponent))))
#define ROUND_MANTISSA_TO_INTEGER(num, unbiased_exponent) \
(__gnuc_extension__ \
({ \
- (num).ld = two63[(num).ldt.sign] + x; \
+ (num).ld += two63[(num).ldt.sign]; \
(num).ld -= two63[(num).ldt.sign]; \
(unbiased_exponent) = (num).ldt.exponent - LONG_DOUBLE_BIAS; \
\
result = ((unbiased_exponent) == BIN_DIGITS_IN_MANTISSAH) ? (long long int)(num).ldt.mantissah : ROUND_MANTISSA((num), (unbiased_exponent)); \
(long long int)result; \
@@ -70,23 +70,26 @@ llrintl(long double x)
long long int
llrintl(x)
long double x;
#endif
{
- _longdouble_union_t ieee_value;
+ volatile _longdouble_union_t ieee_value;
int unbiased_exponent;
- long long int result;
ieee_value.ld = x;
unbiased_exponent = ieee_value.ldt.exponent - LONG_DOUBLE_BIAS;
if (MAGNITUDE_IS_TOO_LARGE(unbiased_exponent)) /* The number is too large. */
return (long long int)x; /* It is left implementation defined what happens. */
- else if (NO_SIGNIFICANT_DIGITS_IN_MANTISSAL(unbiased_exponent))
- result = MAGNITUDE_IS_LESS_THAN_ONE_HALF(unbiased_exponent) ? 0 : ROUND_MANTISSAH_TO_INTEGER(ieee_value, unbiased_exponent);
else
- result = ALL_DIGITS_ARE_SIGNIFICANT(unbiased_exponent) ? CONVERT_MANTISSA_TO_INTEGER(ieee_value, unbiased_exponent)
- : ROUND_MANTISSA_TO_INTEGER(ieee_value, unbiased_exponent);
+ {
+ long long int result;
- return ieee_value.ldt.sign ? -result : result;
+ if (NO_SIGNIFICANT_DIGITS_IN_MANTISSAL(unbiased_exponent))
+ result = MAGNITUDE_IS_LESS_THAN_ONE_HALF(unbiased_exponent) ? 0 : ROUND_MANTISSAH_TO_INTEGER(ieee_value, unbiased_exponent);
+ else
+ result = ALL_DIGITS_ARE_SIGNIFICANT(unbiased_exponent) ? CONVERT_MANTISSA_TO_INTEGER(ieee_value, unbiased_exponent)
+ : ROUND_MANTISSA_TO_INTEGER(ieee_value, unbiased_exponent);
+ return ieee_value.ldt.sign ? -result : result;
+ }
}
diff -aprNU5 djgpp.orig/src/libm/math/lrint.c djgpp/src/libm/math/lrint.c
--- djgpp.orig/src/libm/math/lrint.c 2013-10-20 14:02:24 +0100
+++ djgpp/src/libm/math/lrint.c 2013-10-20 23:34:06 +0100
@@ -58,11 +58,11 @@ ANSI C, POSIX
#define ROUND_MANTISSAH(num, unbiased_exponent) ((long int)(((uint32_t)(num).dt.mantissah | 0x00100000UL) >> (BIN_DIGITS_IN_MANTISSAH - (unbiased_exponent))))
#define ROUND_MANTISSAH_TO_INTEGER(num, unbiased_exponent) \
(__gnuc_extension__ \
({ \
- (num).d = two52[(num).dt.sign] + x; \
+ (num).d += two52[(num).dt.sign]; \
(num).d -= two52[(num).dt.sign]; \
(unbiased_exponent) = (num).dt.exponent - DOUBLE_BIAS; \
\
result = MAGNITUDE_IS_LESS_THAN_ONE((unbiased_exponent)) || IS_ZERO((num)) ? 0 : ROUND_MANTISSAH((num), (unbiased_exponent)); \
(long int)result; \
@@ -73,11 +73,11 @@ ANSI C, POSIX
#define CONVERT_MANTISSA_TO_INTEGER(num, unbiased_exponent) ((long int)(SHIFT_LEFT_MANTISSAH(num, unbiased_exponent) | (num).dt.mantissal << ((unbiased_exponent) - BIN_DIGITS_IN_FRACTION)))
#define ROUND_MANTISSA(num, unbiased_exponent) ((long int)(SHIFT_LEFT_MANTISSAH(num, unbiased_exponent) | (num).dt.mantissal >> (BIN_DIGITS_IN_FRACTION - (unbiased_exponent))))
#define ROUND_MANTISSA_TO_INTEGER(num, unbiased_exponent) \
(__gnuc_extension__ \
({ \
- (num).d = two52[(num).dt.sign] + x; \
+ (num).d += two52[(num).dt.sign]; \
(num).d -= two52[(num).dt.sign]; \
(unbiased_exponent) = (num).dt.exponent - DOUBLE_BIAS; \
\
result = ((unbiased_exponent) == BIN_DIGITS_IN_MANTISSAH) ? (long int)(num).dt.mantissah : ROUND_MANTISSA((num), (unbiased_exponent)); \
(long int)result; \
@@ -106,23 +106,26 @@ lrint(double x)
long int
lrint(x)
double x;
#endif
{
- _double_union_t ieee_value;
+ volatile _double_union_t ieee_value;
int unbiased_exponent;
- long int result;
ieee_value.d = x;
unbiased_exponent = ieee_value.dt.exponent - DOUBLE_BIAS;
if (MAGNITUDE_IS_TOO_LARGE(unbiased_exponent)) /* The number is too large. */
return (long int)x; /* It is left implementation defined what happens. */
- else if (NO_SIGNIFICANT_DIGITS_IN_MANTISSAL(unbiased_exponent))
- result = MAGNITUDE_IS_LESS_THAN_ONE_HALF(unbiased_exponent) ? 0 : ROUND_MANTISSAH_TO_INTEGER(ieee_value, unbiased_exponent);
else
- result = ALL_DIGITS_ARE_SIGNIFICANT(unbiased_exponent) ? CONVERT_MANTISSA_TO_INTEGER(ieee_value, unbiased_exponent) /* >= 2^52 is already an exact integer iff long int is 64 bit. But this is not the case with djgpp. */
- : ROUND_MANTISSA_TO_INTEGER(ieee_value, unbiased_exponent);
+ {
+ long int result;
- return ieee_value.dt.sign ? -result : result;
+ if (NO_SIGNIFICANT_DIGITS_IN_MANTISSAL(unbiased_exponent))
+ result = MAGNITUDE_IS_LESS_THAN_ONE_HALF(unbiased_exponent) ? 0 : ROUND_MANTISSAH_TO_INTEGER(ieee_value, unbiased_exponent);
+ else
+ result = ALL_DIGITS_ARE_SIGNIFICANT(unbiased_exponent) ? CONVERT_MANTISSA_TO_INTEGER(ieee_value, unbiased_exponent) /* >= 2^52 is already an exact integer iff long int is 64 bit. But this is not the case with djgpp. */
+ : ROUND_MANTISSA_TO_INTEGER(ieee_value, unbiased_exponent);
+ return ieee_value.dt.sign ? -result : result;
+ }
}
diff -aprNU5 djgpp.orig/src/libm/math/lrintf.c djgpp/src/libm/math/lrintf.c
--- djgpp.orig/src/libm/math/lrintf.c 2013-10-20 14:02:26 +0100
+++ djgpp/src/libm/math/lrintf.c 2013-10-20 23:34:06 +0100
@@ -15,16 +15,16 @@
#define ALL_DIGITS_ARE_SIGNIFICANT(exp) ((exp) > (BIN_DIGITS_IN_FRACTION - 1))
#define MAGNITUDE_IS_TOO_LARGE(exp) ((exp) > (int)(sizeof(long int) * 8) - 2)
#define MAGNITUDE_IS_LESS_THAN_ONE(exp) ((exp) < 0)
#define MAGNITUDE_IS_LESS_THAN_ONE_HALF(exp) ((exp) < -1)
#define IS_ZERO(num) ((((num).ft.mantissa & ~(1UL << BIN_DIGITS_IN_FRACTION)) == 0) && (((num).ft.exponent & 0xFFU) == 0))
-#define CONVERT_MANTISSA_TO_INTEGER(num, unbiased_exponent) ((long int)((uint32_t)(num).ft.mantissa | 0x00800000UL) << ((unbiased_exponent) - BIN_DIGITS_IN_FRACTION))
-#define ROUND_MANTISSA(num, unbiased_exponent) ((long int)((uint32_t)(num).ft.mantissa | 0x00800000UL) >> (BIN_DIGITS_IN_FRACTION - (unbiased_exponent)))
+#define CONVERT_MANTISSA_TO_INTEGER(num, unbiased_exponent) ((long int)(((uint32_t)(num).ft.mantissa | 0x00800000UL) << ((unbiased_exponent) - BIN_DIGITS_IN_FRACTION)))
+#define ROUND_MANTISSA(num, unbiased_exponent) ((long int)(((uint32_t)(num).ft.mantissa | 0x00800000UL) >> (BIN_DIGITS_IN_FRACTION - (unbiased_exponent))))
#define ROUND_MANTISSA_TO_INTEGER(num, unbiased_exponent) \
(__gnuc_extension__ \
({ \
- (num).f = two23[(num).ft.sign] + x; \
+ (num).f += two23[(num).ft.sign]; \
(num).f -= two23[(num).ft.sign]; \
(unbiased_exponent) = (num).ft.exponent - FLOAT_BIAS; \
\
result = MAGNITUDE_IS_LESS_THAN_ONE((unbiased_exponent)) || IS_ZERO((num)) ? 0 : ROUND_MANTISSA((num), (unbiased_exponent)); \
(long int)result; \
@@ -53,22 +53,23 @@ lrintf(float x)
long int
lrintf(x)
float x;
#endif
{
- _float_union_t ieee_value;
+ volatile _float_union_t ieee_value;
int unbiased_exponent;
- long int result;
ieee_value.f = x;
unbiased_exponent = ieee_value.ft.exponent - FLOAT_BIAS;
if (MAGNITUDE_IS_TOO_LARGE(unbiased_exponent)) /* The number is too large. */
return (long int)x; /* It is left implementation defined what happens. */
else
{
+ long int result;
+
if (MAGNITUDE_IS_LESS_THAN_ONE_HALF(unbiased_exponent))
result = 0;
else
result = ALL_DIGITS_ARE_SIGNIFICANT(unbiased_exponent) ? CONVERT_MANTISSA_TO_INTEGER(ieee_value, unbiased_exponent) /* >= 2^23 is already an exact integer. */
: ROUND_MANTISSA_TO_INTEGER(ieee_value, unbiased_exponent);
diff -aprNU5 djgpp.orig/src/libm/math/lrintl.c djgpp/src/libm/math/lrintl.c
--- djgpp.orig/src/libm/math/lrintl.c 2013-10-20 14:02:28 +0100
+++ djgpp/src/libm/math/lrintl.c 2013-10-20 23:34:10 +0100
@@ -21,11 +21,11 @@
#define IS_ZERO(num) ((((num).ldt.mantissah & 0xFFFFFFFFUL) == 0) && (((num).ldt.mantissal & 0xFFFFFFFFUL) == 0) && (((num).ldt.exponent & 0x7FFFU) == 0))
#define ROUND_MANTISSAH(num, unbiased_exponent) ((long int)((uint32_t)(num).ldt.mantissah >> (BIN_DIGITS_IN_MANTISSAH - (unbiased_exponent))))
#define ROUND_MANTISSAH_TO_INTEGER(num, unbiased_exponent) \
(__gnuc_extension__ \
({ \
- (num).ld = two63[(num).ldt.sign] + x; \
+ (num).ld += two63[(num).ldt.sign]; \
(num).ld -= two63[(num).ldt.sign]; \
(unbiased_exponent) = (num).ldt.exponent - LONG_DOUBLE_BIAS; \
\
result = MAGNITUDE_IS_LESS_THAN_ONE((unbiased_exponent)) || IS_ZERO((num)) ? 0 : ROUND_MANTISSAH((num), (unbiased_exponent)); \
(long int)result; \
@@ -36,11 +36,11 @@
#define CONVERT_MANTISSA_TO_INTEGER(num, unbiased_exponent) ((long int)(SHIFT_LEFT_MANTISSAH(num, unbiased_exponent) | (num).ldt.mantissal << ((unbiased_exponent) - BIN_DIGITS_IN_FRACTION)))
#define ROUND_MANTISSA(num, unbiased_exponent) ((long int)(SHIFT_LEFT_MANTISSAH(num, unbiased_exponent) | (num).ldt.mantissal >> (BIN_DIGITS_IN_FRACTION - (unbiased_exponent))))
#define ROUND_MANTISSA_TO_INTEGER(num, unbiased_exponent) \
(__gnuc_extension__ \
({ \
- (num).ld = two63[(num).ldt.sign] + x; \
+ (num).ld += two63[(num).ldt.sign]; \
(num).ld -= two63[(num).ldt.sign]; \
(unbiased_exponent) = (num).ldt.exponent - LONG_DOUBLE_BIAS; \
\
result = ((unbiased_exponent) == BIN_DIGITS_IN_MANTISSAH) ? (long int)(num).ldt.mantissah : ROUND_MANTISSA((num), (unbiased_exponent)); \
(long int)result; \
@@ -69,23 +69,26 @@ lrintl(long double x)
long int
lrintl(x)
long double x;
#endif
{
- _longdouble_union_t ieee_value;
+ volatile _longdouble_union_t ieee_value;
int unbiased_exponent;
- long int result;
ieee_value.ld = x;
unbiased_exponent = ieee_value.ldt.exponent - LONG_DOUBLE_BIAS;
if (MAGNITUDE_IS_TOO_LARGE(unbiased_exponent)) /* The number is too large. */
return (long int)x; /* It is left implementation defined what happens. */
- else if (NO_SIGNIFICANT_DIGITS_IN_MANTISSAL(unbiased_exponent))
- result = MAGNITUDE_IS_LESS_THAN_ONE_HALF(unbiased_exponent) ? 0 : ROUND_MANTISSAH_TO_INTEGER(ieee_value, unbiased_exponent);
else
- result = ALL_DIGITS_ARE_SIGNIFICANT(unbiased_exponent) ? CONVERT_MANTISSA_TO_INTEGER(ieee_value, unbiased_exponent) /* >= 2^63 is already an exact integer iff long int is 64 bit. */
- : ROUND_MANTISSA_TO_INTEGER(ieee_value, unbiased_exponent);
+ {
+ long int result;
- return ieee_value.ldt.sign ? -result : result;
+ if (NO_SIGNIFICANT_DIGITS_IN_MANTISSAL(unbiased_exponent))
+ result = MAGNITUDE_IS_LESS_THAN_ONE_HALF(unbiased_exponent) ? 0 : ROUND_MANTISSAH_TO_INTEGER(ieee_value, unbiased_exponent);
+ else
+ result = ALL_DIGITS_ARE_SIGNIFICANT(unbiased_exponent) ? CONVERT_MANTISSA_TO_INTEGER(ieee_value, unbiased_exponent) /* >= 2^63 is already an exact integer iff long int is 64 bit. */
+ : ROUND_MANTISSA_TO_INTEGER(ieee_value, unbiased_exponent);
+ return ieee_value.ldt.sign ? -result : result;
+ }
}
diff -aprNU5 djgpp.orig/tests/libc/c99/math/t-lrint.c djgpp/tests/libc/c99/math/t-lrint.c
--- djgpp.orig/tests/libc/c99/math/t-lrint.c 2013-10-20 14:04:10 +0100
+++ djgpp/tests/libc/c99/math/t-lrint.c 2013-10-20 23:53:28 +0100
@@ -26,22 +26,22 @@ static const entry_t tests_double[] =
{{.dt = {0x1U, 0x0U, 0x0U, 1}}, 0}, /* Very small -number. */
/* Normals. */
{{.dt = {0x1U, 0x0U, 0x1U, 0}}, 0}, /* Small number. */
{{.dt = {0x1U, 0x0U, 0x1U, 1}}, 0}, /* Small -number. */
- {{.dt = {0xFFFFFFFFU, 0x7FFFFU, 0x7FEU, 0}}, -2147483648}, /* Big number. */
- {{.dt = {0xFFFFFFFFU, 0x7FFFFU, 0x7FEU, 1}}, -2147483648}, /* Big -number. */
+ {{.dt = {0xFFFFFFFFU, 0x7FFFFU, 0x7FEU, 0}}, -2147483648UL}, /* Big number. */
+ {{.dt = {0xFFFFFFFFU, 0x7FFFFU, 0x7FEU, 1}}, -2147483648UL}, /* Big -number. */
/* Infs. */
- {{.dt = {0x0U, 0x0U, 0x7FFU, 0}}, -2147483648L}, /* Inf */
- {{.dt = {0x0U, 0x0U, 0x7FFU, 1}}, -2147483648L}, /* -Inf */
+ {{.dt = {0x0U, 0x0U, 0x7FFU, 0}}, -2147483648UL}, /* Inf */
+ {{.dt = {0x0U, 0x0U, 0x7FFU, 1}}, -2147483648UL}, /* -Inf */
/* NaNs. */
- {{.dt = {0x1U, 0x0U, 0x7FFU, 0}}, -2147483648L}, /* SNaN */
- {{.dt = {0x1U, 0x0U, 0x7FFU, 1}}, -2147483648L}, /* -SNaN */
- {{.dt = {0x0U, 0xFFFFFU, 0x7FFU, 1}}, -2147483648L}, /* QNaN */
- {{.dt = {0x0U, 0xFFFFFU, 0x7FFU, 0}}, -2147483648L}, /* -QNaN */
+ {{.dt = {0x1U, 0x0U, 0x7FFU, 0}}, -2147483648UL}, /* SNaN */
+ {{.dt = {0x1U, 0x0U, 0x7FFU, 1}}, -2147483648UL}, /* -SNaN */
+ {{.dt = {0x0U, 0xFFFFFU, 0x7FFU, 1}}, -2147483648UL}, /* QNaN */
+ {{.dt = {0x0U, 0xFFFFFU, 0x7FFU, 0}}, -2147483648UL}, /* -QNaN */
/* Number. */
{{.dt = {0x54442D18U, 0x921FBU, 0x3FFU + 0x001U, 0}}, +3}, /* PI */
{{.dt = {0x54442D18U, 0x921FBU, 0x3FFU + 0x001U, 1}}, -3}, /* -PI */
@@ -67,14 +67,14 @@ static const entry_t tests_double[] =
{{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x017U, 1}}, -8388608}, /* -8388608.000000 */
{{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x018U, 0}}, +16777216}, /* 16777216.000000 */
{{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x018U, 1}}, -16777216}, /* -16777216.000000 */
{{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x01EU, 0}}, +1073741824}, /* 1073741824.000000 */
{{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x01EU, 1}}, -1073741824}, /* -1073741824.000000 */
- {{.dt = {0xFFC00000U, 0xFFFFFU, 0x3FFU + 0x01EU, 0}}, +2147483647L}, /* 2147483647.000000 */
- {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x01FU, 1}}, -2147483648L}, /* -2147483648.000000 */
- {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x020U, 0}}, -2147483648L}, /* 4294967296.000000 */
- {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x020U, 1}}, -2147483648L} /* -4294967296.000000 */
+ {{.dt = {0xFFC00000U, 0xFFFFFU, 0x3FFU + 0x01EU, 0}}, +2147483647LL}, /* 2147483647.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x01FU, 1}}, -2147483648UL}, /* -2147483648.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x020U, 0}}, -2147483648UL}, /* 4294967296.000000 */
+ {{.dt = {0x00000000U, 0x00000U, 0x3FFU + 0x020U, 1}}, -2147483648UL} /* -4294967296.000000 */
};
static const size_t n_tests_double = sizeof(tests_double) / sizeof(tests_double[0]);
diff -aprNU5 djgpp.orig/tests/libc/c99/math/t-lrintl.c djgpp/tests/libc/c99/math/t-lrintl.c
--- djgpp.orig/tests/libc/c99/math/t-lrintl.c 2013-10-20 14:04:12 +0100
+++ djgpp/tests/libc/c99/math/t-lrintl.c 2013-10-20 23:55:26 +0100
@@ -27,22 +27,22 @@ static const entry_t tests_long_double[]
{{.ldt = {0x1U, 0x0U, 0x0U, 1}}, 0}, /* Very small -number. */
/* Normals. */
{{.ldt = {0x0U, 0x80000000U, 0x1U, 0}}, 0}, /* Small number. */
{{.ldt = {0x0U, 0x80000000U, 0x1U, 1}}, 0}, /* Small -number. */
- {{.ldt = {0xFFFFFFFFU, 0xFFFFFFFFU, 0x7FFEU, 0}}, -2147483648L}, /* Big number. */
- {{.ldt = {0xFFFFFFFFU, 0xFFFFFFFFU, 0x7FFEU, 1}}, -2147483648L}, /* Big -number. */
+ {{.ldt = {0xFFFFFFFFU, 0xFFFFFFFFU, 0x7FFEU, 0}}, -2147483648UL}, /* Big number. */
+ {{.ldt = {0xFFFFFFFFU, 0xFFFFFFFFU, 0x7FFEU, 1}}, -2147483648UL}, /* Big -number. */
/* Infs. */
- {{.ldt = {0x0U, 0x80000000U, 0x7FFFU, 0}}, -2147483648L}, /* Inf */
- {{.ldt = {0x0U, 0x80000000U, 0x7FFFU, 1}}, -2147483648L}, /* -Inf */
+ {{.ldt = {0x0U, 0x80000000U, 0x7FFFU, 0}}, -2147483648UL}, /* Inf */
+ {{.ldt = {0x0U, 0x80000000U, 0x7FFFU, 1}}, -2147483648UL}, /* -Inf */
/* NaNs. */
- {{.ldt = {0x1U, 0x80000000U, 0x7FFFU, 0}}, -2147483648L}, /* SNaN */
- {{.ldt = {0x1U, 0x80000000U, 0x7FFFU, 1}}, -2147483648L}, /* -SNaN */
- {{.ldt = {0x0U, 0xFFFFFFFFU, 0x7FFFU, 0}}, -2147483648L}, /* QNaN */
- {{.ldt = {0x0U, 0xFFFFFFFFU, 0x7FFFU, 1}}, -2147483648L}, /* -QNaN */
+ {{.ldt = {0x1U, 0x80000000U, 0x7FFFU, 0}}, -2147483648UL}, /* SNaN */
+ {{.ldt = {0x1U, 0x80000000U, 0x7FFFU, 1}}, -2147483648UL}, /* -SNaN */
+ {{.ldt = {0x0U, 0xFFFFFFFFU, 0x7FFFU, 0}}, -2147483648UL}, /* QNaN */
+ {{.ldt = {0x0U, 0xFFFFFFFFU, 0x7FFFU, 1}}, -2147483648UL}, /* -QNaN */
/* Number. */
{{.ldt = {0x2168C000U, 0xC90FDAA2U, 0x3FFFU + 0x0001U, 0}}, +3}, /* PI */
{{.ldt = {0x2168C000U, 0xC90FDAA2U, 0x3FFFU + 0x0001U, 1}}, -3}, /* -PI */
@@ -68,14 +68,14 @@ static const entry_t tests_long_double[]
{{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0017U, 1}}, -8388608}, /* -8388608.000000 */
{{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0018U, 0}}, +16777216}, /* 16777216.000000 */
{{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0018U, 1}}, -16777216}, /* -16777216.000000 */
{{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x001EU, 0}}, +1073741824}, /* 1073741824.000000 */
{{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x001EU, 1}}, -1073741824}, /* -1073741824.000000 */
- {{.ldt = {0x00000000U, 0xFFFFFFFEU, 0x3FFFU + 0x001EU, 0}}, +2147483647L}, /* 2147483647.000000 */
- {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x001FU, 1}}, -2147483648L}, /* -2147483648.000000 */
- {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0020U, 0}}, -2147483648L}, /* 4294967296.000000 */
- {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0020U, 1}}, -2147483648L} /* -4294967296.000000 */
+ {{.ldt = {0x00000000U, 0xFFFFFFFEU, 0x3FFFU + 0x001EU, 0}}, +2147483647LL}, /* 2147483647.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x001FU, 1}}, -2147483648UL}, /* -2147483648.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0020U, 0}}, -2147483648UL}, /* 4294967296.000000 */
+ {{.ldt = {0x00000000U, 0x80000000U, 0x3FFFU + 0x0020U, 1}}, -2147483648UL} /* -4294967296.000000 */
};
static const size_t n_tests_long_double = sizeof(tests_long_double) / sizeof(tests_long_double[0]);
- Raw text -